Computer Networks

Datacenter Networks

Material based on courses at Princeton, MIT



What are Data Centers?

Large facilities with 10s of thousands of networked servers
— Compute, storage, and networking working in concert
— “Warehouse-Scale Computers”
— Huge investment: ~ 0.5 billion for large datacenter




Data Center Costs

Amortized Component Sub-Components
Cost*
~45% Servers CPU, memory, disk
~25% Power UPS, cooling, power
infrastructure distribution
~15% Power draw Electrical utility costs
~15% Network Switches, links, transit

The Cost of a Cloud: Research Problems in Data Center Networks. Sigcomm
CCR 2009. Greenberg, Hamilton, Maltz, Patel.

*3 yr amortization for servers, 15 yr for infrastructure; 5% cost of money



Server Costs

30% utilization considered “good” in most data centers!

Uneven application fit

— Each server has CPU, memory, disk: most applications
exhaust one resource, stranding the others

Uncertainty in demand
— Demand for a new service can spike quickly

Risk management

— Not having spare servers to meet demand brings failure
just when success is at hand



Goal: Agility — Any service, Any Server

Turn the servers into a single large fungible pool
— Dynamically expand and contract service footprint as needed

Benefits
— Lower cost (higher utilization)
— Increase developer productivity
— Achieve high performance and reliability



Achieving Agility

Workload management
— Means for rapidly installing a service’s code on a server
— Virtual machines, disk images, containers

Storage Management
— Means for a server to access persistent data
— Distributed filesystems (e.g., HDFS, blob stores)

Network

— Means for communicating with other servers, regardless of where they are in
the data center



Datacenter Networks

Provide the illusion of

“One Big Switch”
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Compute Storage (Disk, Flash, .




Datacenter Traffic Growth

50x | Traffic generated by servers in our datacenters

Today: Petabits/s in one DC
» More than core of the Internet!

Aggregate traffic —»
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<> Source: “Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network”, SIGCOMM 2015.



Conventional DC Network Problems



Conventional DC Network

Internet | — L2 pros, cons?
""""""""""""""""""""" @ — L3 pros, cons?
DC-Layer 3
DC-Layer 2

* CR = Core Router (L3)
* AR = Access Router (L3)
* S = Ethernet Switch (L2)
* A = Rack of app. servers

~ 1,000 servers/pod == IP subnet

Reference — “Data Center: Load balancing Data Center Services”, Cisco
2004
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Conventional DC Network Problems
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Dependence on high-cost proprietary routers
Extremely limited server-to-server capacity
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Conventional DC Network Problems
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Dependence on high-cost proprietary routers
Extremely limited server-to-server capacity
Resource fragmentation
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And More Problems ...
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Poor reliability
Lack of performance isolation
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VL2 Paper

Measurements

VL2 Design
— Clos topology

V I- t LB http://research.microsoft.com/en-US/news/features/datacenternetworking-081909.aspx

— Name/location separation
(precursor to network virtualization)
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Measurements
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DC Traffic Characteristics

Instrumented a large cluster used for data mining and
identified distinctive traffic patterns

Traffic patterns are highly volatile
— Alarge number of distinctive patterns even in a day

Traffic patterns are unpredictable
— Correlation between patterns very weak

Traffic-aware optimization needs
to be done frequently and rapidly
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DC Opportunities

DC controller knows everything about hosts
Host OS’s are easily customizable

Probabilistic flow distribution would work well enough,
because ...
— Flows are numerous and not huge — few elephants

— Commodity switch-to-switch links are substantially thicker (~
10x) than the maximum thickness of a flow

DC network can be made simple
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Intuition

Higher speed links improve flow-level load balancing
(ECMP)

20x10Ghps 2x100Gbps Prob of 100% throughput = 3.27%
Uplinks Uplinks

N7/ \f JEeBEeUUUGeU0e8

/\ /\ Prob of 100% throughput = 99.95%
o 00
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11x10Gbps flows 1 2
(55% load)




Virtual Layer 2



VL2 Goals

The lllusion of a Huge L2 Switch

1. L2 semantics
3. Performance
Apacity isolation

X X
130 L

<
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Clos Topology

Servers




Building Block:
Merchant Silicon Switching Chips
Switch ASIC

Facebook Wedge

<> Image courtesy of Facebook
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VL2 Design Principles

Randomizing to Cope with Volatility
— Tremendous variability in traffic matrices
Separating Names from Locations
— Any server, any service
Embracing End Systems
— Leverage the programmability & resources of servers
— Avoid changes to switches
Building on Proven Networking Technology

— Build with parts shipping today
— Leverage low cost, powerful merchant silicon ASICs



VL2 Goals and Solutions

Objective

1. Layer-2
semantics

between servers

3. Performance
Isolation

Approach

Employ flat
addressing

Guarantee
bandwidth for
hose-model traffic

Enforce hose model
using existing
mechanisms only

Solution

Name-location
separation &
resolution service

(Valiant LB)

TCP
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Addressing and Routing:
Name-Location Separation

VL2 gyitches run link-state routing and Directory
i i i Corvjce

* Allows to use low cost switches

* Protects network from host-state churn
* Obviates host and switch reconfiguration

Lookeip &
oS | WVZ | Z Respénse

Servers use flat

namancg
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VL2 Agent in Action

Link-state network with LAs (10/8)

H(ft) 10.1.1.1

Hi(ft) 10.0.0.6

20.0.0.55 20.0.0.56

Payload

(10.0.0.4)

ToR
(20.0.0.1)

H(ft) 10.1.1.1
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Payload

20.0.0.55 20.0.0.56
$(20.0.0.55)

A

IP subnet wi ge

H(ft) Int LA

H(ft) dstToR LA
src AA dst AA

payload

H(ft) 10.0.0.6
20.0.0.55 20.0.0.56
Payload

(10.0.0.6)
ToR
(20.0.0.1)

20.0.0.55 | 20.0.0.66

Payload
D (20.0.0.56)

IP subnet with AAs (20/8)

Why use hash for Src IP?

Why anycast & double encap?

VLB
ECMP
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Other details

How does L2 broadcast work?

How does Internet communication work?
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VL2 Directory System

Read-optimized Directory Servers for lookups

Write-optimized
Replicated State
Machines for updates

Stale mappings?

RSM
RSM
. Replicate Servers
RSM RSM
2. set\Y. Ack
(6. Disseminate)
T&Aﬁ N .
Directory
2. Reply 2. Reply
1. Lookup 5. Ack
1. Update
Agent
“Lookup” ) “Update”
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Data Center Congestion Control



Transport
inside the DC

100Kbps—100Mbps links

~100ms latency

10—-40Gbps links
~10-100us latency

Servers




Transport
inside the DC
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What's Different About DC Transport?

Network characteristics
— Very high link speeds (Gb/s); very low latency (microseconds)

Application characteristics
— Large-scale distributed computation

Challenging traffic patterns
— Diverse mix of mice & elephants
— Incast

Cheap switches
— Single-chip shared-memory devices; shallow buffers

32



Data Center Workloads

Mice & Elephants

Short messages

(e.g., query, coordination)

Large flows
(e.g., data update, backup)

o 6%

— Lovwl{ﬁ)\'-cy
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Incast

Worker 1 * Synchronized fan-in congestion

Worker 2 Aggregator

Worker 3

Worker 4

<> Vasudevan et al. (SIGCOMM’09)



MLA Query Completion Time (ms)

Incast in Bing
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Jittering trades of median for high percentiles
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MLA Query Completion Time (ms)
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High Throughput Wmn Low Latency
|

Ba fabric latency (propagation + switching): 10 microseconds
PN ¥




High Throughput Low Latency

Baseline fabric latency (propagation + switching): 10 microseconds

High throughput requires buffering for rate mismatches

... but this adds significant queuing latency




Data Center TCP



TCP in the Data Center

TCP [Jacobsen et al’88] is widely used in the data center
— More than 99% of the traffic

Operators work around TCP problems
— Ad-hoc, inefficient, often expensive solutions
— TCP is deeply ingrained in applications

Practical deployment is hard

- keep it simple!




Review: The TCP Algorithm

N

Additive Increase:
W - W+1 per round-trip time
Multiplicative Decrease:

W - W/2 per drop or ECN mark
\ %

Sender 1

ECN Mark (1 bit) Recei
eceiver

/Window Size (Ratm

Thn?///

Sender
2

ECN = Explicit Congestion Notification



TCP Buffer Requirement

Bandwidth-delay product rule of thumb:
— A single flow needs CXRTT buffers for 100% Throughput.

B < CxRTT B 2 CxRTT

Buffer Size

100% - - - - 100%
17 vV .

Throughput

v
v




Reducing Buffer Requirements

Appenzeller et al. (SIGCOMM ‘04):
— Large # of flows: C X RTT/\/N is enough.

Window Size
Rate) | Y, AT D

A
Buffer Size

»

Throughput 4
100%

v
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Reducing Buffer Requirements

Appenzeller et al. (SIGCOMM ‘04):
— Large # of flows: C X RTT/v/N is enough

Can’t rely on stat-mux benefit in the DC.
— Measurements show typically only 1-2 large flows at each server

Key Observation:

Low variance in sending rate = Small buffers suffice
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DCTCP: Main Idea

» Extract multi-bit feedback from single-bit stream of ECN marks
— Reduce window size based on fraction of marked packets.

ECN Marks TCP DCTCP

1011110111 Cut window by 50% Cut window by 40%
0000000001 Cut window by 50% Cut window by 5%
TCP DCTCP

250000

15000 W

§

124

138 138.2 1384 1386 1388 139 342 3422 3424 3426 3428 343

Time (sec) Time (sec)

Window Size (Bytes)

..

Window Size (Bytes)
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DCTCP: Algorithm

Switch side: B Mark®00n’t
Mark

— Mark packets when Queue Length > K.
i

|
Sender side:
— Maintain running average of fraction of packets marked

(a).

# of marked ACKs
each RTT: F = = a<—(1-92)«a :
Total # of ACKs =9

W« (1-Sw
» Adaptive window decreases: 2

— Note: decrease factor between 1 and 2.
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DCTCP vs TCP

Experiment: 2 flows (Win 7 stack), Broadcom 1Gbps Switch

700 ¢
s 600
=

(an)]

X

N

S

500 |
400 |

Buffer is mostly empty

DCTCP mitigates Incast by creating a
large buffer headroom

0 Time (seconds)



Why it Works

1. Low Latency
v Small buffer occupancies = low queuing delay

2. High Throughput

v ECN averaging = smooth rate adjustments, low variance

3. High Burst Tolerance
v’ Large buffer headroom = bursts fit

v" Aggressive marking - sources react before packets are
dropped
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Bing Benchmark (baseline)
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Completion Time (ms)

Bing Benchmark (scaled 10x)

M TCP/ShallowBuf
Incast
B TCP/DeepBuf
Deep buffers fix / P
incast, but W DCTCP/ShallowBuf
increase latency
DCTCP good for
both incast &

latency

Query Traffic Short messages
(Incast bursts) (Delay-sensitive)



