
Computer	Networks

Datacenter	Networks

Material	based	on	courses	at	Princeton,	MIT

What	are	Data	Centers?
Large	facilities	with	10s	of	thousands	of	networked	servers

– Compute, storage, and networking working in concert
– “Warehouse-Scale Computers”
– Huge investment: ~ 0.5 billion for large datacenter

2

Data	Center	Costs

Amortized
Cost*

Component Sub-Components

~45% Servers CPU,	memory, disk

~25% Power
infrastructure

UPS,	cooling,	power
distribution

~15% Power	draw Electrical	utility	costs

~15% Network Switches,	links, transit

*3	yr	amortization	for	servers,	15	yr	for	infrastructure;	5%	cost	of	money

The	Cost	of	a	Cloud:	Research	Problems	in	Data	Center	Networks.		Sigcomm
CCR	2009.		Greenberg,	Hamilton,	Maltz,	Patel.

Server	Costs
30%	utilization	considered	“good”	in	most	data	centers!

Uneven	application	fit
– Each	server	has	CPU,	memory,	disk:	most	applications	
exhaust	one	resource,	stranding	the	others

Uncertainty	in	demand
– Demand	for	a	new	service	can	spike	quickly

Risk	management
– Not	having	spare	servers	to	meet	demand	brings	failure	
just	when	success	is	at	hand

4

Goal:	Agility	– Any	service,	Any	Server

Turn	the	servers	into	a	single	large	fungible	pool
– Dynamically	expand	and	contract	service	footprint	as	needed

Benefits
– Lower	cost	(higher	utilization)
– Increase	developer	productivity
– Achieve	high	performance	and	reliability

5

Achieving	Agility

Workload	management
– Means	for	rapidly	installing	a	service’s	code	on	a	server
– Virtual	machines,	disk	images,	containers

Storage	Management
– Means	for	a	server	to	access	persistent	data
– Distributed	filesystems (e.g.,	HDFS,	blob	stores)

Network
– Means	for	communicating	with	other	servers,	regardless	of	where	they	are	in	
the	data	center

6

Datacenter	Networks

10,000s	of	ports

Compute Storage	(Disk,	Flash,	…)

Provide the illusion of
“One Big Switch”

Datacenter	Traffic	Growth

DCN bandwidth growth demanded much more

12

² Source:		“Jupiter	Rising:	A	Decade	of	Clos	Topologies	and	Centralized	
Control	in		Google’s	Datacenter	Network”,	SIGCOMM	2015.

Today:	Petabits/s	in	one	DC
Ø More	than	core	of	the	Internet!

Conventional	DC	Network	Problems

9

Conventional	DC	Network

Reference	– “Data	Center:	Load		balancing	Data	Center	Services”,	Cisco	
2004

CR CR

AR AR AR AR.	.	.

SS

DC-Layer	3

Internet

SS

…

SS

…

.	.	.

DC-Layer	2
Key

• CR =	Core	Router	(L3)
• AR =	Access	Router	(L3)
• S =	Ethernet	Switch	(L2)
• A =	Rack	of	app.	servers										

~	1,000	servers/pod	==	IP	subnet

10

— L2	pros,	cons?
— L3	pros,	cons?

Conventional	DC	Network	Problems
CR CR

AR AR AR AR

SS

SS

…

SS

…

.	.	.

SS

SS

…

SS

…

~	5:1

~	40:1

~	200:1

Dependence	on	high-cost	proprietary	routers
Extremely	limited	server-to-server	capacity

11

Conventional	DC	Network	Problems
CR CR

AR AR AR AR

SS

SS SS

SS

SS SS

IP	subnet	(VLAN)	#1

~	200:1

IP	subnet	(VLAN)	#2

… … … …

12

Dependence	on	high-cost	proprietary	routers
Extremely	limited	server-to-server	capacity
Resource	fragmentation

And	More	Problems	…
CR CR

AR AR AR AR

SS

SS SS

SS

SS SS

IP	subnet	(VLAN)	#1

~	200:1

IP	subnet	(VLAN)	#2

… … … …

13

Poor	reliability
Lack	of	performance	isolation

Complicated	manual	
L2/L3	re-configuration

VL2	Paper

Measurements

VL2	Design
- Clos	topology
- Valiant	LB
- Name/location	separation																											

(precursor	to	network	virtualization)		

14

http://research.microsoft.com/en-US/news/features/datacenternetworking-081909.aspx

Measurements

15

DC	Traffic	Characteristics
Instrumented	a	large	cluster	used	for	data	mining	and	
identified	distinctive	traffic	patterns

Traffic	patterns	are	highly	volatile
– A	large	number	of	distinctive	patterns	even	in	a	day

Traffic	patterns	are	unpredictable
– Correlation	between	patterns	very	weak

Traffic-aware	optimization	needs	
to	be	done	frequently	and	rapidly

16

DC	Opportunities
DC	controller	knows	everything about	hosts

Host	OS’s	are	easily	customizable

Probabilistic flow	distribution	would	work	well	enough,	
because	…

– Flows	are	numerous	and	not	huge	– few	elephants
– Commodity	switch-to-switch	links	are	substantially	thicker	(~	
10x)	than	the	maximum	thickness	of	a	flow

DC	network	can	be	made	simple

17

Intuition

Higher	speed	links	improve	flow-level	load	balancing	
(ECMP)

18

20×10Gbps
Uplinks

2×100Gbps
Uplinks

11×10Gbps	flows
(55%	load)

1 2

1 2 20

Prob of	100%	throughput	=	3.27%

Prob of	100%	throughput	=	99.95%	

Virtual	Layer	2

19

1.	L2	semantics

2.	Uniform	high	
capacity

3.	Performance	
isolation

… … … …

20

VL2 Goals

Clos	Topology

.	.	.

.	.	.

TOR

20	
Servers

Int

.

Aggr

.

Offer	huge	capacity	via	multiple	paths	(scale	out)

21

Building	Block:	
Merchant	Silicon	Switching	Chips

22

Facebook	Wedge

6	pack

Switch	ASIC

² Image	courtesy	of	Facebook

VL2	Design	Principles
Randomizing	to	Cope	with	Volatility

– Tremendous	variability	in	traffic	matrices

Separating	Names	from	Locations
– Any	server,	any	service

Embracing	End	Systems
– Leverage	the	programmability	&	resources	of	servers
– Avoid	changes	to	switches

Building	on	Proven	Networking	Technology
– Build	with	parts	shipping	today
– Leverage	low	cost,	powerful	merchant	silicon	ASICs

VL2	Goals	and	Solutions
SolutionApproachObjective

2.	Uniform
high	capacity	
between	servers

Enforce	hose	model	
using	existing	

mechanisms	only

Employ	flat	
addressing

1.	Layer-2	
semantics

3.	Performance	
Isolation

Guarantee	
bandwidth	for

hose-model	traffic

Flow-based	random	
traffic	indirection

(Valiant	LB)

Name-location	
separation	&	

resolution	service

TCP

24

Addressing	and	Routing:
Name-Location	Separation

payloadToR3

.

y
x

Servers	use	flat	
names

Switches	run	link-state	routing	and	
maintain	only	switch-level	topology

y z
payloadToR4 z

ToR2 ToR4ToR1 ToR3

y,	z
payloadToR3 z

.	.	.

Directory
Service

…
x	à ToR2
y	à ToR3
z	à ToR4

…

Lookup	&
Response

…
x	à ToR2
y	à ToR3
z	à ToR3

…

• Allows	to	use	low	cost	switches
• Protects	network	from	host-state	churn
• Obviates	host	and	switch	reconfiguration

25

VL2	Agent	in	Action

26

!"#$%&'()#*+),#--$#./0123

4+'56$)7)(#'()*895#*+),#4-$#.:0123

!"#$%&'()#*+),#--$#./0123

!"!"#$#$#$%%&

!')
!'#$'$'$'&

#"!"#$#$#$%(&

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#%%

!'#$#$#$(&

;8<
!"#$#$#$'&

!'#$#$#$)&

;8<
!"#$#$#$'&

!')
!'#$'$'$'&

!')
!'#$'$'$'&

.

!"#$%"&

!"#"#"#$$!"#"#"#$%
H&'() *"#"#"#%

H&'() *"#*#*#*

!"#$%"&

!"#"#"#$$!"#"#"#$%

H&'() *"#"#"#%

Figure : VLB in an example VL network. Sender S sends pack-
ets to destination D via a randomly-chosen intermediate switch
using IP-in-IP encapsulation. AAs are from 20/8, and LAs are
from 10/8. H(ft) denotes a hash of the five tuple.

4.2 VL2 Addressing and Routing
This section explains how packets flow through a VL network,

and how the topology, routing design, VL agent, and directory sys-
tem combine to virtualize the underlying network fabric— creating
the illusion that hosts are connected to a big, non-interfering data-
center-wide layer- switch.

4.2.1 Address resolution and packet forwarding
VL uses two different IP-address families, as illustrated in Fig-

ure . The network infrastructure operates using location-specific
IP addresses (LAs); all switches and interfaces are assigned LAs, and
switches run an IP-based (layer-) link-state routing protocol that
disseminates only these LAs.This allows switches to obtain the com-
plete switch-level topology, as well as forward packets encapsulated
with LAs along shortest paths. On the other hand, applications use
application-specific IP addresses (AAs), which remain unaltered no
matter how servers’ locations change due to virtual-machinemigra-
tion or re-provisioning. Each AA (server) is associated with an LA,
the identifier of the ToR switch to which the server is connected.
The VL directory system stores the mapping of AAs to LAs, and
this mapping is created when application servers are provisioned to
a service and assigned AA addresses.

The crux of offering layer- semantics is having servers believe
they share a single large IP subnet (i.e., the entire AA space) with
other servers in the same service, while eliminating the ARP and
DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: To route traffic between servers, which use
AA addresses, on an underlying network that knows routes for LA
addresses, the VL agent at each server traps packets from the host
and encapsulates the packet with the LA address of the ToR of the
destination as shown in Figure . Once the packet arrives at the
LA (the destination ToR), the switch decapsulates the packet and
delivers it to the destination AA carried in the inner header.

Address resolution: Servers in each service are configured to
believe that they all belong to the same IP subnet. Hence, when an
application sends a packet to anAA for the first time,the networking
stack on the host generates a broadcast ARP request for the destina-
tion AA.The VL agent running on the host intercepts this ARP re-
quest and converts it to a unicast query to the VL directory system.
The directory system answers the query with the LA of the ToR to
which packets should be tunneled.The VL agent caches this map-
ping from AA to LA addresses, similar to a host’s ARP cache, such
that subsequent communication need not entail a directory lookup.

Access control via the directory service: A server cannot send
packets to anAA if the directory service refuses to provide it with an
LA throughwhich it can route its packets.Thismeans that the direc-

tory service can enforce access-control policies. Further, since the
directory system knows which server is making the request when
handling a lookup, it can enforce fine-grained isolation policies. For
example, it could enforce the policy that only servers belonging to
the same service can communicatewith each other. An advantage of
VL is that, when inter-service communication is allowed, packets
flow directly from a source to a destination, without being detoured
to an IP gateway as is required to connect two VLANs in the con-
ventional architecture.

These addressing and forwarding mechanisms were chosen for
two reasons. First, they make it possible to use low-cost switches,
which often have small routing tables (typically just 16K entries)
that can hold only LA routes, without concern for the huge number
of AAs. Second, they reduce overhead in the network control plane
by preventing it from seeing the churn in host state, tasking it to the
more scalable directory system instead.

4.2.2 Random traffic spreading over multiple paths
To offer hot-spot-free performance for arbitrary traffic matri-

ces, VL uses two related mechanisms: VLB and ECMP. The goals
of both are similar — VLB distributes traffic across a set of inter-
mediate nodes and ECMP distributes across equal-cost paths — but
each is needed to overcome limitations in the other. VL uses flows,
rather than packets, as the basic unit of traffic spreading and thus
avoids out-of-order delivery.

Figure  illustrates how theVL agent uses encapsulation to im-
plement VLB by sending traffic through a randomly-chosen Inter-
mediate switch.The packet is first delivered to one of the Intermedi-
ate switches, decapsulated by the switch, delivered to the ToR’s LA,
decapsulated again, and finally sent to the destination.

While encapsulating packets to a specific, but randomly chosen,
Intermediate switch correctly realizes VLB, it would require updat-
ing a potentially huge number of VL agents whenever an Inter-
mediate switch’s availability changes due to switch/link failures. In-
stead, we assign the same LA address to all Intermediate switches,
and the directory system returns this anycast address to agents upon
lookup. Since all Intermediate switches are exactly three hops away
from a source host, ECMP takes care of delivering packets encapsu-
lated with the anycast address to any one of the active Intermediate
switches. Upon switch or link failures, ECMPwill react, eliminating
the need to notify agents and ensuring scalability.

In practice, however, the use of ECMP leads to two problems.
First, switches today only support up to -way ECMP, with -
way ECMP being released by some vendors this year. If there are
more paths available than ECMP can use, then VL defines several
anycast addresses, each associated with only as many Intermediate
switches as ECMP can accommodate. When an Intermediate switch
fails, VL reassigns the anycast addresses from that switch to other
Intermediate switches so that all anycast addresses remain live, and
servers can remain unaware of the network churn. Second, some
inexpensive switches cannot correctly retrieve the five-tuple values
(e.g., the TCP ports) when a packet is encapsulatedwith multiple IP
headers. Thus, the agent at the source computes a hash of the five-
tuple values and writes that value into the source IP address field,
which all switches do use in making ECMP forwarding decisions.

The greatest concern with both ECMP and VLB is that if “ele-
phant flows” are present, then the random placement of flows could
lead to persistent congestion on some links while others are under-
utilized. Our evaluation did not find this to be a problem on data-
centerworkloads (§.). Should it occur, initial results show theVL
agent can detect and deal with such situations with simple mecha-
nisms, such as re-hashing to change the path of large flows when
TCP detects a severe congestion event (e.g., a full window loss).

src AA dst AA
payload

src IP dst IPH(ft) dstToR LA

(10.0.0.6)
ToR

(20.0.0.1)

src IP dst IPH(ft) Int LA

VLB

VL2	Agent ECMP

(10.0.0.4)
ToR

(20.0.0.1)

Int
(10.1.1.1

)

Why	use	hash	for	Src IP?
Why	anycast &	double	encap?

Other	details

How	does	L2	broadcast	work?

How	does	Internet	communication	work?

27

VL2	Directory	System

Read-optimized	Directory	Servers	for	lookups

Write-optimized
Replicated	State
Machines	for	updates

Stale	mappings?

28

Figure : VLDirectory SystemArchitecture

4.2.3 Backwards Compatibility
This section describes how aVLnetwork handles external traf-

fic, as well as general layer- broadcast traffic.
Interaction with hosts in the Internet: 20 of the traffic han-

dled in our cloud-computing data centers is to or from the Internet,
so the network must be able to handle these large volumes. Since
VL employs a layer- routing fabric to implement a virtual layer-
 network, the external traffic can directly flow across the high-
speed silicon of the switches thatmake upVL, without being forced
through gateway servers to have their headers rewritten, as required
by some designs (e.g., Monsoon []).

Servers that need to be directly reachable from the Internet (e.g.,
front-end web servers) are assigned two addresses: an LA in addi-
tion to theAAused for intra-data-center communicationwith back-
end servers. This LA is drawn from a pool that is announced via
BGP and is externally reachable. Traffic from the Internet can then
directly reach the server, and traffic from the server to external desti-
nations will exit toward the Internet from the Intermediate switches,
while being spread across the egress links by ECMP.

Handling Broadcast: VL provides layer- semantics to appli-
cations for backwards compatibility, and that includes supporting
broadcast and multicast. VL completely eliminates the most com-
mon sources of broadcast: ARP and DHCP. ARP is replaced by the
directory system, and DHCP messages are intercepted at the ToR
using conventional DHCP relay agents and unicast forwarded to
DHCP servers. To handle other general layer- broadcast traffic,
every service is assigned an IP multicast address, and all broadcast
traffic in that service is handled via IP multicast using the service-
specific multicast address. The VL agent rate-limits broadcast traf-
fic to prevent storms.

4.3 Maintaining Host Information using
the VL2 Directory System

TheVLdirectory provides three key functions: () lookups and
() updates for AA-to-LAmappings; and () a reactive cache update
mechanism so that latency-sensitive updates (e.g., updating the AA
to LA mapping for a virtual machine undergoing live migration)
happen quickly. Our design goals are to provide scalability, relia-
bility and high performance.

4.3.1 Characterizing requirements
We expect the lookup workload for the directory system to be

frequent and bursty. As discussed in Section ., servers can com-
municate with up to hundreds of other servers in a short time period
with each flow generating a lookup for an AA-to-LA mapping. For
updates, the workload is driven by failures and server startup events.
As discussed in Section ., most failures are small in size and large
correlated failures are rare.

Performance requirements:The bursty nature ofworkload im-
plies that lookups require high throughput and low response time.

Hence, we choose ms as the maximum acceptable response time.
For updates, however, the key requirement is reliability, and re-
sponse time is less critical. Further, for updates that are scheduled
ahead of time, as is typical of planned outages and upgrades, high
throughput can be achieved by batching updates.

Consistency requirements: Conventional Lnetworks provide
eventual consistency for the IP to MAC address mapping, as hosts
will use a stale MAC address to send packets until the ARP cache
times out and a new ARP request is sent. VL aims for a similar
goal, eventual consistency of AA-to-LA mappings coupled with a
reliable update mechanism.

4.3.2 Directory System Design
The differing performance requirements andworkload patterns

of lookups and updates led us to a two-tiered directory system ar-
chitecture. Our design consists of () a modest number (-
servers for K servers) of read-optimized, replicated directory
servers that cacheAA-to-LAmappings andhandle queries fromVL
agents, and () a small number (- servers) of write-optimized,
asynchronous replicated state machine (RSM) servers that offer a
strongly consistent, reliable store of AA-to-LA mappings. The di-
rectory servers ensure low latency, high throughput, and high avail-
ability for a high lookup rate. Meanwhile, the RSM servers ensure
strong consistency and durability, using the Paxos [] consensus
algorithm, for a modest rate of updates.

Each directory server caches all the AA-to-LAmappings stored
at theRSMservers and independently replies to lookups fromagents
using the cached state. Since strong consistency is not required, a
directory server lazily synchronizes its localmappingswith the RSM
every  seconds. To achieve high availability and low latency, an
agent sends a lookup to k (two in our prototype) randomly-chosen
directory servers. If multiple replies are received, the agent simply
chooses the fastest reply and stores it in its cache.

The network provisioning system sends directory updates to a
randomly-chosen directory server, which then forwards the update
to a RSM server. The RSM reliably replicates the update to every
RSM server and then replies with an acknowledgment to the direc-
tory server, which in turn forwards the acknowledgment back to the
originating client. As an optimization to enhance consistency, the
directory server can optionally disseminate the acknowledged up-
dates to a few other directory servers. If the originating client does
not receive an acknowledgmentwithin a timeout (e.g., s), the client
sends the same update to another directory server, trading response
time for reliability and availability.

Updating caches reactively: Since AA-to-LA mappings are
cached at directory servers and in VL agents’ caches, an update
can lead to inconsistency. To resolve inconsistency without wasting
server and network resources, our design employs a reactive cache-
updatemechanism.The cache-updateprotocol leverages this obser-
vation: a stale host mapping needs to be corrected only when that
mapping is used to deliver traffic. Specifically, when a stale map-
ping is used, some packets arrive at a stale LA—a ToR which does
not host the destination server anymore. The ToR may forward a
sample of such non-deliverable packets to a directory server, trig-
gering the directory server to gratuitously correct the stale mapping
in the source’s cache via unicast.

5. EVALUATION
In this section we evaluate VL using a prototype running on

an  server testbed and  commodity switches (Figure ). Our
goals are first to show that VL can be built from components that
are available today, and second, that our implementation meets the
objectives described in Section .

Data	Center	Congestion	Control

29

INTERNET

Servers

Fabric

100Kbps–100Mbps	links
~100ms	latency

10–40Gbps	links
~10–100μs	latency

Transport	
inside	the	DC

INTERNET

Servers

Fabric

web app data-
base

map-
reduce HPC monitorin

gcache

Interconnect	for	distributed	compute	workloads

Transport	
inside	the	DC

What’s	Different	About	DC	Transport?
Network	characteristics

– Very	high	link	speeds	(Gb/s);	very	low	latency	(microseconds)	

Application	characteristics
– Large-scale	distributed	computation

Challenging	traffic	patterns
– Diverse	mix	of	mice	&	elephants
– Incast

Cheap	switches
– Single-chip	shared-memory	devices;	shallow	buffers

32

Short	messages
(e.g.,	query,	coordination)

Large	flows
(e.g.,	data	update,	backup)

Low	Latency

High	Throughput

Data	Center	Workloads

Mice	&	Elephants

TCP	timeout

Worker	1

Worker	2

Worker	3

Worker	4

Aggregator

RTOmin =	300	ms

• Synchronized	fan-in	congestion

Incast

² Vasudevan et	al.	(SIGCOMM’09)	

Requests	are	jittered	over	10ms	window.
Jittering	switched	off	around	8:30	am.

35

M
LA

	Q
ue

ry
	C
om

pl
et
io
n	
Ti
m
e	
(m

s)
Incast in	Bing

Jittering	trades	of	median	for	high	percentiles

Requests	are	jittered	over	10ms	window.
Jittering	switched	off	around	8:30	am.

36

M
LA

	Q
ue

ry
	C
om

pl
et
io
n	
Ti
m
e	
(m

s)
Incast in	Bing

Jittering	trades	of	median	for	high	percentiles

High	Throughput Low	Latency

Baseline	fabric	latency	(propagation	+	switching):	10	microseconds	

High	Throughput Low	Latency

High	throughput	requires	buffering	for	rate	mismatches
…	but	this	adds	significant	queuing	latency

Baseline	fabric	latency	(propagation	+	switching):	10	microseconds	

Data	Center	TCP

TCP	in	the	Data	Center

TCP	[Jacobsen	et	al.’88] is	widely	used	in	the	data	center
– More	than	99% of	the	traffic	

Operators	work	around	TCP	problems
‒ Ad-hoc,	inefficient,	often	expensive	solutions
‒ TCP	is	deeply	ingrained	in	applications

Practical	deployment	is	hard	
à keep	it	simple!

Review:	The	TCP	Algorithm

Sender	1

Sender	
2

Receiver

ECN	=	Explicit	Congestion	Notification

Time

W
in
do

w
	S
ize

	(R
at
e)

Additive	Increase:
W	àW+1	per	round-trip	time

Multiplicative	Decrease:
W	àW/2	per	drop	or	ECN	mark

ECN	Mark	(1	bit)

TCP	Buffer	Requirement

Bandwidth-delay	product	rule	of	thumb:
– A	single	flow	needs	C×RTT	buffers	for	100%	Throughput.

Th
ro
ug
hp

ut
Bu

ffe
r	S

ize

100%

B

B	≥	C×RTT

B

100%

B	<	C×RTT

Window	Size
(Rate)

Buffer	Size

Throughput
100%

Appenzeller et	al. (SIGCOMM	‘04):
– Large	#	of	flows:																														is	enough.

43

Reducing	Buffer	Requirements

Appenzeller et	al. (SIGCOMM	‘04):
– Large	#	of	flows:																														is	enough

Can’t	rely	on	stat-mux benefit	in	the	DC.
– Measurements	show	typically only	1-2	large	flows at	each	server

44

Key	Observation:
Low	variance	in	sending	rate	à Small	buffers	suffice

Reducing	Buffer	Requirements

ØExtract	multi-bit	feedback	from	single-bit	stream	of	ECN	marks
– Reduce	window	size	based	on	fraction	of	marked	packets.

ECN	Marks TCP	 DCTCP

1	0	1	1	1	1	0	1	1	1 Cut	window	by	50% Cut	window	by	40%

0	0	0	0	0	0	0	0	0	1 Cut	window	by 50% Cut	window	by		5%

DCTCP:	Main	Idea
W
in
do

w
	S
ize

	(B
yt
es
)	

W
in
do

w
	S
ize

	(B
yt
es
)	

Time	(sec) Time	(sec)

TCP DCTCP

DCTCP:	Algorithm

Switch	side:
– Mark	packets	when	Queue	Length	>	K.

Sender	side:
– Maintain	running	average	of	fraction of	packets	marked	
(α).

Ø Adaptive	window	decreases:

– Note:	decrease	factor	between	1	and	2.

B KMark Don’t	
Mark

each RTT : F =
of marked ACKs
Total # of ACKs

 Þ a¬ (1- g)a + gF

W ¬ (1- a
2
)W

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP
TCP

(K
By
te
s)

Experiment: 2	flows	(Win	7	stack),	Broadcom	1Gbps	Switch

ECN	Marking	Thresh	=	30KB

DCTCP	vs TCP

Buffer	is	mostly	empty

DCTCP	mitigates	Incast by	creating	a	
large	buffer	headroom	

1. Low	Latency
ü Small	buffer	occupancies	→ low	queuing	delay

2.	High	Throughput	
ü ECN	averaging	→ smooth	rate	adjustments,	low	variance

3.	High	Burst	Tolerance
ü Large	buffer	headroom	→ bursts	fit
ü Aggressive	marking	→ sources	react	before	packets	are	

dropped

21

Why	it	Works

25

Background	Flows Query	Flows

Bing	Benchmark	(baseline)

Bing	Benchmark	(scaled	10x)

Query	Traffic
(Incast bursts)	

Short	messages
(Delay-sensitive)

Co
m
pl
et
io
n	
Ti
m
e	
(m

s)

Incast

Deep	buffers	fix	
incast,	but	

increase	latency

DCTCP	good	for	
both	incast &	

latency

