11/26/13

Introduction to Computer Networks

Application Layer Overview

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Where we are in the Course

 Starting the Application Layer!

— Builds distributed “network
services” (DNS, Web) on Transport
services

Application

Transport

Network
Link
Physical

95

11/26/13

Evolution of Internet Applications

* Always changing, and growing ...

Rl
| Web (Video)

Traffic
| P2P (BitTorrent)
| Web (CDNs)
| Web (HTTP)
| News (NTTP)
| Email | Email (SMTP)
| File Transfer (FTP)

| : : Telnet . | : SecureISheII (s\

| | | | | i
1970 1980 1990 2000 2010

96

Evolution of Internet Applications (2)

* For a peek at the state of the Internet:
— Akamai’s State of the Internet Report (quarterly)
— Cisco’s Visual Networking Index
— Mary Meeker’s Internet Report

* Robust Internet growth, esp. video, wireless and mobile
— Most traffic is video, will be 90% of Internet in a few years
— Wireless traffic will soon overtake wired traffic
— Mobile traffic is still a small portion (15%) of overall
— Growing attack traffic from China, also U.S. and Russia

97

11/26/13

Evolution of the Web

8661

6661

000z

100z

z00z

SVG

2 5 & g Cookies & 2
HTML 2 ssL
Java
Flash
2 21 El
HTTP

Internet Explorer

HTML 3

HTML 3.2

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt

HTML 4 €SS2

Web Fonts

98

g g H H
SV6
Canvas
» \

200

Evolution of

00z

8002

css220

Transforms
Offiine Web
Apps:AppCache

css230

Transforms

Drag & Drop

web

| Workers

Animation

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt

css3
Gradients.

Transitions

Geolocation

€S53 Flexbox

RegisterProtocalHandler

0Lz

Date/time
input types

elements

) =

System APl

the Web (2)

Lo
z10z

Content Security
Policy

Touch Events

CSS3 Filters
WebRTC

Web Audio
APl

WebGL pOM Mutation
observers

99

11/26/13

Topic

* The DNS (Domain Name System)
— Human-readable host names, and more
— Part 1: the distributed namespace

M\\Nw.uw.edu?] (128.94.155.135

\%
b‘-— Network

100

Names and Addresses

* Names are higher-level identifiers for resources

* Addresses are lower-level locators for resources
— Multiple levels, e.g. full name = email - IP address - Ethernet address

* Resolution (or lookup) is mapping a name to an address

Name, e.g. W \T;m" Address, e.g.

“Andy Tanenbaum,” Lookup T “Vrijie Universiteit, Amsterdam”
or “flits.cs.vu.nl” — |||ﬂ or IPv4 “130.30.27.38”
Directory

101

11/26/13

Before the DNS — HOSTS.TXT

Directory was a file HOSTS.TXT
regularly retrieved for all hosts from
a central machine at the NIC
(Network Information Center)

Names were initially flat, became
hierarchical (e.g., Ics.mit.edu) ~85

Neither manageable nor efficient
as the ARPANET grew ...

102

DNS

A naming service to map between host
names and their IP addresses (and more)

— www.uwa.edu.au = 130.95.128.140

Goals:
— Easy to manage (esp. with multiple parties)
— Efficient (good performance, few resources)

Approach:

— Distributed directory based on a hierarchical
namespace

— Automated protocol to tie pieces together

11/26/13

DNS Namespace

* Hierarchical, starting from “.” (dot, typically omitted)
| Generic |} Countries ————|
aero com edu gov museum org net --- au jp uk us nl

cisco washington acm ieee edu ac co vu oce
eng cs eng jack jill uwa keio nec cs law
robot cs csl filts fluit

104

TLDs (Top-Level Domains)

Run by ICANN (Internet Corp. for Assigned Names and Numbers)
— Starting in ‘98; naming is financial, political, and international ©

22+ generic TLDs
— Initially .com, .edu, .gov., .mil, .org, .net
— Added .aero, .museum, etc. from ’01 through .xxx in’11
— Different TLDs have different usage policies

~250 country code TLDs
— Two letters, e.g., “.au”, plus international characters since 2010
— Widely commercialized, e.g., .tv (Tuvalu)
— Many domain hacks, e.g., instagr.am (Armenia), goo.gl (Greenland)

11/26/13

DNS Zones

* A zone is a contiguous portion of the namespace

} Generic || Countries —————————

cisco| \washington
eng s eng uwa kelo nec

csl

f°b°‘ Delegatlon A zone

DNS Zones (2)

e Zones are the basis for distribution
— EDU Registrar administers .edu
— UW administers washington.edu
— CS&E administers cs.washington.edu

e Each zone has a nameserver to
contact for information about it
— Zone must include contacts for

delegations, e.g., .edu knows
nameserver for washington.edu

107

11/26/13

* A zone is comprised of DNS resource records that give

DNS Resource Records

information for its domain names

Type Meaning
SOA Start of authority, has key zone parameters
A IPv4 address of a host
AAAA (“quad A”) | IPv6 address of a host
CNAME Canonical name for an alias
MX Mail exchanger for the domain
NS Nameserver of domain or delegated subdomain
108
; Authoritative data for cs.vu.nl
cs.vu.nl. 86400 IN SOA star boss (9527,7200,7200,241920,86400)
cs.vu.nl. 86400 IN MX 1 zephyr
cs.vu.nl. 86400 IN MX 2 top
cs.vu.nl. 86400 IN NS star Name server
star 86400 IN A 130.37.56.205
zephyr 86400 IN A 130.37.20.10
top 86400 IN A 130.37.20.11 IP addresses
86400 IN CNAME tar.cs.vu.nl
KSVW 86400 IN CNAME ieagh(;sr.\::';.Cu.nl of computers
flits 86400 IN A 130.37.16.112
flits 86400 IN A 192.31.231.165
flits 86400 IN MX 1 flits
flits 86400 IN MX 2 zephyr
flits 86400 IN MX 3 top
rowboat IN A 130.37.56.201
IN MX 1 rowboat .
IN MX 2 zephyr Mail gateways
little-sister IN A 130.37.62.23
laserjet IN A 192.31.231.216
109

11/26/13

DNS Resolution

* DNS protocol lets a host resolve
any host name (domain) to IP
address

e If unknown, can start with the root
nameserver and work down zones

* Let’s see an example first ...

110

DNS Resolution (2)

* flits.cs.vu.nl resolves robot.cs.washington.edu

E Root name server
(a.root-servers.net)

Edu name server
(a.edu-servers.net

| | 1: query

==/

Local
(cs.vu.nl)
name server

10: robot.cs.washington.edu
filts.cs.vu.nl

uw
Originator

name server

111

11/26/13

lterative vs. Recursive Queries

* Recursive query

— Nameserver completes resolution
and returns the final answer

— E.g., flits = local nameserver

* |terative query

— Nameserver returns the answer or
who to contact next for the answer

— E.g., local nameserver = all others

112

lterative vs. Recursive Queries (2)

* Recursive query

— Lets server offload client burden
(simple resolver) for manageability

— Lets server cache over a pool of
clients for better performance

* |terative query
— Lets server “file and forget”
— Easy to build high load servers

113

10

11/26/13

Caching

* Resolution latency should be low
— Adds delay to web browsing
* Cache query/responses to answer

future queries immediately
— Including partial (iterative) answers
— Responses carry a TTL for caching

query \Cache __out
< _______
response
Nameserver

114

Caching (2)

flits.cs.vu.nl now resolves eng.washington.edu
— And previous resolutions cut out most of the process

| know the server for
washington.edu!

C l:query hCachi 2:query
4 eng washington.edu 3: eng washington.edu

Local nameserver UW nameserver
(for cs.vu.nl) (for washington.edu)

115

11

11/26/13

Local Nameservers

* Local nameservers typically run by
IT (enterprise, ISP)
— But may be your host or AP
— Or alternatives e.g., Google public DNS

* Clients need to be able to contact
their local nameservers
— Typically configured via DHCP

116

Root Nameservers

* Root (dot) is served by 13 server names
— a.root-servers.net to m.root-servers.net
— All nameservers need root IP addresses
— Handled via configuration file (named.ca)

* There are >250 distributed server instances
— Highly reachable, reliable service

— Most servers are reached by IP anycast
(Multiple locations advertise same IP! Routes
take client to the closest one. See §5.x.x)

— Servers are IPv4 and IPv6 reachable

117

12

11/26/13

Legend

, Multiple instances

@Slnglel ance
«

Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current dep

Imagery ©2013 NASA, TerraMetrics - Terms of Use

.

Root Server Deployment

o i

118

DNS Protocol

Query and response messages
— Built on UDP messages, port 53
— ARQ for reliability; server is stateless!
— Messages linked by a 16-bit ID field

Client Server

Query

ID=0x1234

4————””'—_————————————— Time
ID=0x1234

Response

119

13

11/26/13

DNS Protocol (2)

 Service reliability via replicas
— Run multiple nameservers for domain
— Return the list; clients use one answer
— Helps distribute load too

NS for uw.edu? Use A, BorC

- [E

120

DNS Protocol (3)

* Security is a major issue
— Compromise redirects to wrong site!
— Not part of initial protocols ..

* DNSSEC (DNS Security Extensions)

— Long under development, now partially
deployed. We'll look at it later

Um, security??

121

14

11/26/13

Introduction to Computer Networks

HTTP, the HyperText Transfer
Protocol (§7.3.1-7.3.4)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

 HTTP, (HyperText Transfer
Protocol)

— Basis for fetching Web pages

request [~ <
_ <m|re: >>>>>>>>>>
= Network s

123

15

11/26/13

) i Mg mn 1 s g M s
Ty —ar—
@ -c D Py e cten

[y —

Web Context

=\

Document
= Program ——y—,
! 1
\ Database :
\‘ H)
\

N 7

\ ==
\ / youtube.com

\

\

\

|:| HTTP request
- Web

HTTP response Web server

el www.cs.washington.edu
browser
s

==

google-analytics.com

. £

-| Page as a set of related |
| HTTP transactions

-, ~
4 sy e . ~

124

Web Protocol Context

* HTTP is a request/response protocol
for fetching Web resources

— Runs on TCP, typically port 80
— Part of browser/server app

request

HTTP HTTP
TCP response TCP
IP IP
802|.11 802|.11

125

16

11/26/13

Fetching a Web page with HTTP

* Start with the page URL:
http://en.wikipedia.org/wiki/Vegemite
| J \ J
Y Y
Protocol Server Page on server

* Steps:
— Resolve the server to IP address (DNS)
— Set up TCP connection to the server
— Send HTTP request for the page
— (Await HTTP response for the page)
Execute / fetch other Web resources / render
— Clean up any idle TCP connections

126

Static vs Dynamic Web pages

» Static web page is a file contents, e.g., image

* Dynamic web page is the result of program execution
— Javascript on client, PHP on server, or both

g Web
page
4\

Web browser

Program

—— Web server @7

/

N O W =

127

17

11/26/13

Evolution of HTTP

* Consider security (SSL/TLS for HTTPS) later

Proliferation of (H'I§'II?II>3\2(.O)
1{ content types and
persist browser/server
1.0 devel /d A scripting
-0 developdqd Rrc 2616RFC 2965 technologies
0.9 T 1 Rrc2068, 2109 J
Cookies| [RFC 1945
4 SSL 2.0 | : | | ,
1990 1995 2000 2005 2010

128

* Try it yourself:

HTTP Protocol

* Originally a simple protocol, with
many options added over time
— Text-based commands, headers

— As a “browser” fetching a URL
— Run “telnet en.wikipedia.org 80”

— Type “GET /wiki/Vegemite HTTP/1.0”

to server followed by a blank line

— Server will return HTTP response with

the page contents (or other info)

129

18

11/26/13

Method Description
I;Ztgcg —>GET Read a Web page
Upload HEAD Read a Web page's header
data _|POST Append to a Web page

PUT Store a Web page
DELETE |Remove the Web page
TRACE Echo the incoming request
CONNECT |Connect through a proxy
OPTIONS |Query options for a page

HTTP Protocol (2)

* Commands used in the request

130

HTTP Protocol (3)

* Codes returned with the response

Code

Meaning

Examples

Ixx

Information

100 = server agrees to handle client's request

Yes! —>

2XX

Success

200 = request succeeded; 204 = no content present

3xx

Redirection

301 = page moved; 304 = cached page still valid

4xx

Client error

403 = forbidden page; 404 = page not found

5xx

Server error

500 = internal server error; 503 = try again later

131

19

11/26/13

HTTP Protocol (4)

* Many header fields specify capabilities and content
— E.g., Content-Type: text/html, Cookie: lect=8-4-http

Function

Example Headers

Browser capabilities
(client = server)

User-Agent, Accept, Accept-Charset, Accept-Encoding,
Accept-Language

Caching related
(mixed directions)

If-Modified-Since, If-None-Match, Date, Last-Modified,
Expires, Cache-Control, ETag

Browser context
(client = server)

Cookie, Referer, Authorization, Host

Content delivery
(server = client)

Content-Encoding, Content-Length, Content-Type,
Content-Language, Content-Range, Set-Cookie

Introduction to Computer Networks

HTTP Performance (§7.3.4,

§7.5.2)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

20

11/26/13

PLT (Page Load Time)

e PLT is the key measure of web
performance

— From click until user sees page
— Small increases in PLT decrease sales

* PLT depends on many factors

— Structure of page/content
— HTTP (and TCP!) protocol
— Network RTT and bandwidth

134

Early Performance

Connection setup

 HTTP/1.0 used one TCP connection D—
to fetch one web resource 4

- Made HTTP Very easy to bU||d Connection setup

Time | ———— .|
— But gave fairly poor PLT... l —

HTTP
| Request

+— HTTP
Response

21

11/26/13

Early Performance (2)

. C ; | HTTP
* Many reasons why PLT is larger than e
4——/_——
necessary s gggonse
— Sequential request/responses,even |
when to different servers | Connection setup_
. . i x
— Multiple TCP connection setups to i T —
the same server l

— Multiple TCP slow-start phases |

* Network is not used effectively .
— Worse with many small resources / page

136

Parallel Connections

* One simple way to reduce PLT

— Browser runs multiple (8, say) HTTP
instances in parallel

— Server is unchanged; already handled
concurrent requests for many clients

* How does this help?
— Single HTTP wasn’t using network much ...
— So parallel connections aren’t slowed much
— Pulls in completion time of last fetch

137

22

11/26/13

— Exacerbates network bursts, and loss

Persistent Connections

* Parallel connections compete with
each other for network resources

— 1 parallel client = 8 sequential clients?

Persistent connection alternative
— Make 1 TCP connection to 1 server

— Use it for multiple HTTP requests

138

Time

Persistent Connections (2)

Connection setup

=

| HTTP
Request

— HTTP
Response

One request per connection

Sequential requests

per connection

Pipelined

requests <;\—-\

Pipelined requests
per connection

23

11/26/13

Persistent Connections (3)

* Widely used as part of HTTP/1.1
— Supports optional pipelining

— PLT benefits depending on page
structure, but easy on network

* [ssues with persistent connections

— How long to keep TCP connection?
— Can it be slower? (Yes. But why?)

140

Web Caching

* Users often revisit web pages
— Big win from reusing local copy!
— This is caching

Local copies
3
Network —5
= Server

* Key question:
— When is it OK to reuse local copy?

141

24

11/26/13

Web Caching (2)

* Locally determine copy is still valid
— Based on expiry information such as
“Expires” header from server
— Or use a heuristic to guess (cacheable,
freshly valid, not modified recently)
— Content is then available right away

. @ Network —g

= Server

142

Web Caching (3)

* Revalidate copy with server
— Based on timestamp of copy such as
“Last-Modified” header from server
— Or based on content of copy such as
“Etag” header from server
— Content is available after 1 RTT

Network —%
Server

143

25

11/26/13

Web Caching (4)

* Putting the pieces together:

1: Request 2: Check expiry 3: Conditional GET
4a: Not modified Program
Cache B)

O
r‘-.:-':? BT

5: Response

4b: Response

Web server

Web browser

144

Introduction to Computer Networks

CDNs (Content Delivery
Networks) (§7.5.3)

% Computer Science & Engineering
\ 4

WA UNIVERSITY of WASHINGTON

26

11/26/13

Context

As the web took off in the 90s, traffic
volumes grew and grew. This:

1. Concentrated load on popular servers

2. Led to congested networks and need
to provision more bandwidth

3. Gave a poor user experience

ldea:
— Place popular content near clients
— Helps with all three issues above

148

Popularity of Content

Zipf’'s Law: few popular items,
many unpopular ones; both matter

George Zipf (1902-1950)

1

Zipf popularity
(kth item is 1/k)

Relative Frequency

oL ! | ' I Rank Source: Wikipedia

151

27

11/26/13

Content Delivery Network

CDN origin Ig
server =.—7 Distribution to

=7 TS~ / CDN nodes

- | =~
|
|

~o

CDNnode .-

m

Sydney P Boston Amsterda
age
/ fetch

= B IQQ ,Q L]
= CErEEEeE EEEEen

Worldwide clients

153

Content Delivery Network (2)

* DNS resolution of site gives different answers to clients
— Tell each client the site is the nearest replica (map client IP)

Sydney -
CDN origin Amsterdam
CDN node 1. Distribut ot server CDN node
e R — J— - &
4: Fetch
page
CDN DNS
2: Query DNS server
EE_E"'_ 3: “Contact Sydney” “Contact Amsterdam”| — 5
=

Sydney clients Amsterdam clients

28

11/26/13

Business Model

* Clever model pioneered by Akamai

— Placing site replica at an ISP is win-win

— Improves site experience and reduces
bandwidth usage of ISP

= User

Consumer

——f ==

site

155

Topic

* The Future of HTTP
— How will we make the web faster?
— A brief look at some approaches

< >
HT i
|_! ::;:z;?““"‘k*j
— NELWorK B

29

11/26/13

Modern Web Pages

* Waterfall diagram shows progression of page load

http://coursera.org 0.2 04 06 058 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1. coursera.org - / 274 ms (302)
2. ocsp.godaddy.con - / B 172 s
A 3. www.coursera.org - / B 5 ns
4. ocsp.digicert.con - / B 127 »s
5. ocsp.digicert.con - / B30 ms
B 6. dtSzaw6adsblc....ont.net - wa.css [~ [l 295 ns
B 7. dtSzaw6a98blc.....net - require.js B39 ms
B 8. dtSzaw6ad8blc....ont.net - home.js 269 ns
B 9. dtSzaw6ad8blc....net - loading.gif 171 ms
B10. www.coursera.org - favicon.ico L] 144 s
B11. dtSzaw6ad8blc....t.net - banner.js PEES

Il ONS Lookup | M Initial Connection

[l SSL Negotiation

I Time to First Byte 2xx result

Il Content Download

| Start Render | | Document Complete

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

157

Modern Web Pages (2)

http://coursera.org 0.2 0.4 06 0.8 1.0 12 1.4 1.6 1.8 2.0 2.2 2.4 2.4
1. coursera.org - / 274 ms (302)
2. ocsp.godaddy.com - / B 172 ns
@ 3. www.coursera.org - / I 95 s
. I 4. ocsp.digicert.con - / B 127 »s

YI keS H 5. ocsp.digicert.con - / ECS
B 6. dt5zau6a98blc....ont.net - wa.css [~ Bl 295 ns
B 7. dtSzaw6adsblc..... net - require.js WBe ms

_23 requests A s. .ont.net - home.js 269 ns
@ 9. dtSzaw6as8blc....net - loading.gif 171 me
B10. www.coursera.org - favicon.ico] 144 ns
BA11. dtSzawad8blc....t.net - banner.js iaa ns

- 1 M b data B12. dtSzawbad8blc. ... iaproregular .woff a%? s
B13. dt5zau6ag8blc. ...9_neu-courses.png R 597 ns
B14. dtSzawbadiblc. ...018_ace-intro.png 606 ns

_2 6 secs 615, www.coursera.org - 1ist2 553 ns

. B16. dtSzaw6astblc....t - quotemark.png B 123 ns
B17. dtSzawbag8blc.....net - sprite.png B 92 ms
A18. wuw.coursera.org - signup_stats B 24 ns
©19. dtSzaw6adsblc. ...015_istraker. jpg B 407 ms
B20. dtSzawbadsblc. ...017_crunchies. jpg 545 ns |
&21. <. Fiapr voff 483 ms [N
A22. dtSzawbadsblc. ...ra_logo_small.png B 298 ns
6123, eventing.coursera.org - 204.min.js 600 ns [DR
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 2.4 2.d

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

158

30

11/26/13

Modern Web Pages (3)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4

CPU Utilization

=]

BandwidthIn (0 = 5,000 Kbps)

Yay! (Network used well)

* Waterfall and PLT depends on many factors
— Very different for different browsers
— Very different for repeat page views
— Depends on local computation as well as network

159

Recent work to reduce PLT

Pages grow ever more complex!
— Larger, more dynamic, and secure
— How will we reduce PLT?

1. Tools to study page load process

2. Better use of the network
— HTTP/2 effort based on SPDY

3. Better content structures
— mod_pagespeed server extension

31

11/26/13

Page load is critical, but often slow

® Amazon can increase 1% revenue by decreasing page load time by 0.1s.

0.8 | S— ‘
R - | : | A few top pages take
w06 j Median page loac P pag
Opa |- , ;] .) more than 10 seconds
4 ; {time is 3 seconds.
; a : to load.
0.2 - ;
; : Cold load 1
o | | 1 | 1 |
0 2 4 6 8 10 12 14

Page Load Time (seconds)

Many techniques aim to optimize
page load time

* Best practices: JaveScript/CSS placement, Image
minification, ...

* Server placement: CDNs

* Web pages and cache: mod_pagespeed, Silo

* TCP/DNS: TCP fast open, ASAP, DNS pre-resolution, TCP
pre-connect

..., but optimizations don’t always work.

32

11/26/13

...because , page load bottlenecks are
not well understood.

* Page load process is not strictly streamlined

* Page load activities are inter-dependent, leading
to bottlenecks

Dependency example

<html>

<script src="b.js"></script> . >

 -'-b}:iTML depends on JS completion
</html> '

>
- - i HTML does not depend on image loads

<html>

 W

Js

<script src="b.js"></script>
</html>

33

11/26/13

Example: Dependency and bottleneck

Possible optimization: Make JS loads faster

<html>

<script src="b.js"></script> >
H n n html
 5o
</html>

<html>
 html
<script src="b.js"></script>
b.js

</html>

Dependency and page structure key are the key
to identifying bottlenecks

>

Methodology to infer dependencies

o Design test pages
o Examine documentation
o Inspect browser code

34

11/26/13

Test pages (1 of 2)

>
HTML “html
js
JS IMG
Insert delays

>
js

Suggests the JS loads affects image load

Test pages (2 of 2)

HTML

IMG JS
Insert delays

v —>
js

Suggests image loads *does not* affect JS load

35

11/26/13

Reverse engineer page loads with test
pages

® Use developer tools to measure timing

Reverse engineer page loads with test
pages

* Use developer tools to measure timing
o An object follows another

36

11/26/13

Dependency policies

Dependency Name| Definition

F1 Loading an object — Parsing the tag that references the object

F2 Evaluating an object — Loading the object
Flow F3 Parsing the HTML page — Loading the first block of the HTML page*

F4 Rendering the DOM tree — Updating the DOM

F5 Loading an object referenced by a JavaScript or CSS — Evaluating the JavaScript or CSS*

Fo6 Downloading/Evaluating an object — Listener triggers or timers

o1 Parsing the next tag — Completion of a previous JavaScript download and evaluation
Output 0O2 JavaScript evaluation — Completion of a previous CSS evaluation

O3 Parsing the next tag — Completion of a previous CSS download and evaluation

B1 [Lazy] Loading an image appeared in a CSS — Parsing the tag decorated by the image
Lazy/Eager B2 [Lazy] Loading an image appeared in a CSS — Evaluation of any CSS that appears in front of the tag
binding decorated by the image

B3 [Eager] Preloading embedded objects does not depend on the status of HTML parsing. (breaks F1)
Resource R1 Number of objects fetched from different servers — Number of TCP connections allowed per domain
constraint R2 Browsers may execute key computational activities on the same thread, creating dependencies among

the activities. This dependency is determined by the scheduling policy.

* An activity depends on partial completion of another activity.

WProf architecture

Browser Stack

Web page instances

Bottleneck paths

Browser extension/plug-in framework

Native browser
Dependency graphs _J—

WProf profiler

JapeoT
13[q0

A ol I
O T (V] |'3|'I < r3n S [
2 d m @ o»|a o
4 § @ 5513 e Activity Dependenc
= 5 — S o
3 2 @ timing ies

37

11/26/13

Dependency graph

<html>
<head>

<link rel="stylesheet" src="./main.css">

<script src="./main.js" />
</head>
<l--request a JS-->
<body onload="...">

</body>
</html>

Parse css tag--._

HTML Parsing

Object H
Loading Conn 2

Conn 13, load html

.-~ Parse js tag

..- Parse img tag

b

load img
ap Ioa:u js

eval j§ a3

load:

Start Elapsed Time DOMContentLoaded DOMLoad
Network DComputation "" i —» D R

Critical path analysis

Critical path: the longest bottleneck path.

Parse css tag--. .- Parse js tag .- Parse img tag
HTML Parsing | a, a, ag ayy
b
r 4
Conn 18, load html a, | load css ay load img
Object H 4 5
Loading Conn 2 load js as ap load js
; he 4
Evaluation : eval css|_a; 4t a, fval j§ eval jd a,
Rendering ag | render load >
Start Elapsed Time DOMContentLoaded DOMLoad

_ Network DComputation Blocking —» Dependency

38

11/26/13

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--._ .-~ Parse js tag .- Parse img tag
HTML Parsing | a, a, ag ayy
3
Y
Conn 1a, load html a4 | load css ayp {loadimg
Object H » :
Loading Conn 2 load js as a;; loafd js
H he %

e 3 \ H
Evaluation : eval css|_a; 4t a; fvaljs eval jd a,; I
Rendering ag | render loadé >

Start Elapsed Time DOMContentLoaded DOMLoad

_ Network DComputation Blocking —» Dependency

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag-. | .-~ Parse js tag _.- Parse img tag
HTML Parsing | a, a, ag ayy
Y
. 4
Conn 18, load html ‘a, | load css ay load img
Object H 4 } 5
Loading Conn 2 load js as B a2 Jloaf js
Evaluation : eval css|_a; 4t a, fval j§ eval jd a3 I
Rendering ag | render load: >
Start Elapsed Time DOMContentLoaded DOMLoad

Network DComputaﬁon Blocking —# Dependency

39

11/26/13

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--. .-~ Parse js tag .-- Parse img tag
HTML Parsing | a, a, ag ayy
Y
Conn 12, load html a, | load css ayp {loadimg
Object : 4 j
Loading Conn 2 load js as a2 Jload js
H he 1 %
Evaluation : eval css| 3ﬂ a; leval j§ eval jd a,; I
Rendering ag | render loadg >
Start Elapsed Time DOMContentLoaded DOMLoad

_ Network DComputation Blocking —# Dependency

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag-. | .-~ Parse js tag _.- Parse img tag
HTML Parsing | a, a, ag ajy
A
Conn 1a, load html! a, | load css ay load img
Object : » 3 5
Loading Conn load js as B a; Jloaf js
Evaluation i eval css|_a; 4t a, fval j eval jd a,; I
Rendering ag | render loadg >
Start Elapsed Time DOMContentLoaded DOMLoad

~ Network DComputation Blocking ——# Dependency

40

11/26/13

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--._ .- Parse js tag ..- Parse img tag
HTML Parsing | a, az ag ay,
y
Conn 1a, load html| a, | load css ay load img
Object H 4 }
Loading Conn 2 load js as a2 Jload js
H A b :
Evaluation eval cs a, feval j oval i 2]
Rendering } 3g | render load; >
Start Elapsed Time DOMContentLoaded DOMLoad

_ Network DComputation Blocking —# Dependency

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag-. | .-~ Parse js tag _.- Parse img tag
HTML Parsing | a, a, ag ajy
A
Conn 12, load html | a, | load css ayg load img
Object i b i
Loading Conn Z load js as a; Jloaf js
Evaluation eval a al j eval j§ a3 I
Rendering ag | render loadg >
Start Elapsed Time DOMContentLoaded DOMLoad

~ Network DComputation Blocking —# Dependency

41

11/26/13

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--. .-~ Parse js tag ..- Parse img tag
HTML Parsing | a, az ag ay,
y
Conn 13, load html a, | load css ay load img
Object i]
Loading Conn 2 load js as a;; Jloatljs
Evaluation eval a al j eval jd a3 I
Rendering ag | render loadg >
Start Elapsed Time DOMContentLoaded DOMLoad

_ Network DComputation Blocking —# Dependency

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--._

HTMLParsing | a, | a

.-~ Parse js tag ..- Parse img tag

gz R R

Conn 1 loadimg
Object ; ;
Loading Conn 2 ai, Jloat js
Evaluation eval jg a3 I
Rendering ag | render loadg >
Start Elapsed Time DOMContentLoaded DOMLoad

~ Network DComputation Blocking —# Dependency

42

11/26/13

Critical path analysis
Critical path: the longest bottleneck path.

Parse css tag--._ .-~ Parse js tag .-- Parse img tag

HTMLParsing | a, | a, 777777 | an_|

Conn 1 load img |
Object j
Loading Conn 2 fae [Ioa:h js
Evalua;j't;n eval j 31; I
Rendering load >
Improving activities Off the Elapsed Time DOMContentLoaded DOMLoad
.. tation Ry Blocking —» D den
critical path doesn't help e
page load.

How much does the network contribute to
page load time?

43

11/26/13

Computation is significant

1 1 1 1 1
o8 | .
L 0.6 |- Network —
© o4 | -
o2 | Pt |

O 1 1 1
0 0.2 0.4 0.6 0.8 1

Fractions

Network/Computation as a fraction of page load time

Computation is significant

1 I | 1 1
08 | —
L 0.6 | Network —
© o4 —
02 P t —

0 1 1 1
(0] 0.2 0.4 0.6 0.8 1

Fractions

Computation is ~35% of page load time (median) on the critical path.

44

11/26/13

How much does caching help page load
performance?

How much does caching help?
® Caching eliminates 80% Web object loads
® |t doesn't reduce page load time as much

® Caching only eliminates 40% Web object loads on
the critical path

45

11/26/13

Recent work to reduce PLT

Pages grow ever more complex!
— Larger, more dynamic, and secure
— How will we reduce PLT?

1. Tools to study page load process

2. Better use of the network
— HTTP/2 effort based on SPDY

3. Better content structures
— mod_pagespeed server extension

189

HTTP/1.1

* Opens too many TCP connections
* Lacks control over the transfer of Web objects

* Single TCP segment cannot carry more than one
HTTP request or response

46

11/26/13

SPDY
Multiplexes HTTP data into a single TCP conn.

Prioritizes Web objects

Allows servers to initiate Web object transfers
* Compresses headers, not only payloads

Unclear how much SPDY helps

* SPDY whitepaper from Google
— SPDY helps 27% - 60%

* Other studies from Microsoft, Akamai, and
Wprof
— SPDY sometimes helps and sometimes hurts
— Overall, SPDY helps < 10%

47

11/26/13

Challenges in understanding SPDY

Many factors external to SPDY affect SPDY
— E.g., network parameters, TCP settings

Page load time varies significantly

Dependencies between network and
computation significantly affect page loads

Approach
Isolate the contributing factors to SPDY

FVNW WA J FTEE T WYY YW T TRAR Py W WA T I LR AT

Control variability in page loads by
— Using a custom emulator instead of browsers
— Experimenting in a controlled network

48

11/26/13

Experiment 1

 Make HTTP requests; artificial web pages

Factors Range

RTT 20ms, 100ms, 200ms
Bandwidth 1Mbps, 10Mbps
Packet loss rate 0, .5%, 1%, 2%

195

Experiment 1 (cont.)

'| obj size ', '
1 :lkarge
\

196

49

11/26/13

Experiment 2

 Make HTTP requests

* Consider real Web object sizes from the top
200 Web pages

Experiment 3

* Emulate the page load process with EpLoad
— Goal: controls the variability of page loads

* Epload records/replays page loads
— Recorder: capture the dependency graph

— Replayer: make network requests while simulating
the computation portions

50

11/26/13

0.8 |- -oes woes woen worn soechoes s

Experiment 3 (cont.)

- F |
d
«
0.6 - - ‘ i
P !
© 0 loss;TCP
0.4 1
O loss; TCP+
0.2 2% loss; TCP]
2% loss;TCP+ ===sssas
0 T
(0] 0.5 1 1.5 2

PLT of SPDY divided by PLT of HTTP
RTT=20ms, Bandwidth=10Mbps

How to improve SPDY?

* Develop better policies for prioritization and
server push

* Leverage information from dependency graphs

— Web objects that are closer to the root should be
assigned a higher priority or be pushed earlier

51

11/26/13

Findings with SPDY policies

* Prioritization helps little
— Priorities are embedded in the dependency graph
— Prioritization doesn’t break the dependency graph
* Server push can help quite a bit
— Server push breaks the dependency graph

mod_pagespeed

* QObservation:

— The way pages are written affects
how quickly they load

— Many books on best practices for
page authors and developers

* Key idea:

— Have server re-write (compile) pages
to help them load quickly!

— mod_pagespeed is an example

52

11/26/13

mod pagespeed (2)

* Apache server extension
— Software installed with web server

— Rewrites pages “on the fly” with rules
based on best practices

* Example rewrite rules:
— Minify Javascript
— Flatten multi-level CSS files
— Resize images for client
— And much more (100s of specific rules)

204

53

