11/12/13

Introduction to Computer Networks

Congestion Overview
(§6.3, §6.5.10)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* Understanding congestion, a “traffic
jam” in the network
— Later we will learn how to control it

What'’s the hold up?

11/12/13

Nature of Congestion

* Simplified view of per port output queues
— Typically FIFO (First In First Out), discard when full

Router
Router - T
& = — A—
—_— —
2 LN

T \Queued
(FIFO) Queue packets

Nature of Congestion (2)

* Queues help by absorbing bursts
when input > output rate

* But if input > output rate persistently,
queue will overflow
— This is congestion

* Congestion is a function of the traffic
patterns — can occur even if every
link have the same capacity

11/12/13

* What happens to performance as we increase the load?
A

Goodput (packets/sec)

A

Effects of Congestion

Capacity

Offered load (packets/sec)

Delay (seconds)

L

Offered load (packets/sec)

* What happens to performance as we increase the load?

Goodput (packets/sec)

A

Effects of Congestion (2)

Capacity

{/‘i‘; esired

A response
?.‘,\Congestion
collapse

B
Offered load (packets/sec)

Delay (seconds)

A

Onset of
congestion

L

Offered load (packets/sec)

11/12/13

Effects of Congestion (3)

As offered load rises, congestion occurs
as queues begin to fill:

— Delay and loss rise sharply with more load
— Throughput falls below load (due to loss)

— Goodput may fall below throughput (due
to spurious retransmissions)

None of the above is good!

— Want to operate network just
the onset of congestion

Bandwidth Allocation

Important task for network is to
allocate its capacity to senders
— Good allocation is efficient and fair

Efficient means most capacity is
used but there is no congestion

Fair means every sender gets a
reasonable share the network

10

11/12/13

Bandwidth Allocation (2)

 Why is it hard? (Just split equally!)
— Number of senders and their offered
load is constantly changing

— Senders may lack capacity in different
parts of the network

— Network is distributed; no single party
has an overall picture of its state

11

Bandwidth Allocation (3)

* Key observation:

— In an effective solution, Transport and
Network layers must work together

* Network layer witnesses congestion
— Only it can provide direct feedback

* Transport layer causes congestion
— Only it can reduce offered load

12

11/12/13

Bandwidth Allocation (4)

* Solution context:

— Senders adapt concurrently based on
their own view of the network

— Design this adaption so the network
usage as a whole is efficient and fair

— Adaption is continuous since offered
loads continue to change over time

13

Introduction to Computer Networks

Fairness of Bandwidth
Allocation (§6.3.1)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

11/12/13

Topic

* What'’s a “fair” bandwidth allocation?

— The max-min fair allocation
[b g‘@ <«]
)

16

Recall

* We want a good bandwidth
allocation to be fair and efficient

— Now we learn what fair means

* Caveat: in practice, efficiency is
more important than fairness

17

11/12/13

Efficiency vs. Fairness

* Cannot always have both!

— Example network with traffic
A->B, B>Cand A=>C

— How much traffic can we carry?

A B C

g 1 f i 1 f i

18

Efficiency vs. Fairness (2)

* |f we care about fairness:

— Give equal bandwidth to each flow
— A-2>B: % unit, B>C: %, and A>C, ¥
— Total traffic carried is 1 2 units

g 1 f i 1 f i

19

11/12/13

Efficiency vs. Fairness (3)

 |f we care about efficiency:
— Maximize total traffic in network
— A-2>B: 1 unit, B=>C:1,and A>C,0
— Total traffic rises to 2 units!
A B C

g 1 f i 1 f i

20

The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?

— A—>C uses more network resources
(two links) than A>B or B>C

— Host A sends two flows, B sends one

* Not productive to seek exact fairness
— More important to avoid starvation
— “Equal per flow” is good enough

21

11/12/13

Generalizing “Equal per Flow”

* Bottleneck for a flow of traffic is
the link that limits its bandwidth
— Where congestion occurs for the flow
— For A>C, link A-B is the bottleneck

A B C
L ¢ gl —
\Bottleneck

22

Generalizing “Equal per Flow” (2)

* Flows may have different bottlenecks
— For A>C, link A-B is the bottleneck
— For B=>C, link B—C is the bottleneck
— Can no longer divide links equally ...

A B C

5 1 % i 10 —

23

10

11/12/13

Max-Min Fairness

* Intuitively, flows bottlenecked on a
link get an equal share of that link

* Max-min fair allocation is one that:

Increasing the rate of one flow will
decrease the rate of a smaller flow

— This “maximizes the minimum” flow

24

Max-Min Fairness (2)

* To find it given a network, imagine
“pouring water into the network”

1.
2.

Start with all flows at rate O

Increase the flows until there is a
new bottleneck in the network

Hold fixed the rate of the flows that
are bottlenecked

Go to step 2 for any remaining flows

25

11

11/12/13

Max-Min Example

e Example: network with 4 flows, links equal bandwidth
— What is the max-min fair allocation?

A
R1 R2 R3 B

B
C}# — = t(-]J/' c
0e” R4 R5 "R6 ™D

26

Max-Min Example (2)

* When rate=1/3, flows B, C, and D bottleneck R4—R5
— Fix B, C, and D, continue to increase A

A
Acd - - S
tj \—»-’/‘
R1 R R3 'B
Be Bottlenec\lf
e = T a0
D. R4 ~ R5 Ré “D

27

12

11/12/13

Max-Min Example (3)
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck

. A
A aa [4 () !
R1 R R3 B
B, Bottleneck
N\ / _c
Cc ! 5 -
D. R4 ~ R5 R6 *D

28

Max-Min Example (4)
* End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 full

— Other links have extra capacity that can’t be used

o Ae 2/3 - - 2/3 é___;‘\/ A

1/3

R1
B¥ 183 4/ c
C —brz2 X Fﬁ] 1/3 i(—]/
pe” R4

1/3 R5 3 Rs ~mp

29

13

11/12/13

Adapting over Time

Allocation changes as flows start and stop

'y
1
S
5 AR
3 Flow 1
=
e
T 05 e—————————— Flow 2
= I R ow 2 stops
© |‘\ |
§ : Flow 2 starts Flow 3 start 'l"J
ow o starts
: ‘< z
0 ' ’ : >
1 4 9 Time
30
Flow 1 slows when Flow 1 speeds up
c 1 Flow 2 starts when Flow 2 stops
o
§ Flow 1 ..
— Flow 3 limit
S 05 is elsewhere
— . kb "
= |— Flow 2 stops
o° |ﬁ |
§ : Flow 2 starts Flow 3 start 'l"J
oW o starts
| ‘< z
0 ! [i .
1 4 9 Time

31

14

11/12/13

Introduction to Computer Networks

Additive Increase Multiplicative
Decrease (AIMD) (§6.3.2)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Recall

Want to allocate capacity to senders
— Network layer provides feedback
— Transport layer adjusts offered load
— A good allocation is efficient and fair

How should we perform the allocation?
— Several different possibilities ...

34

15

11/12/13

Bandwidth Allocation Models

* Open loop versus closed loop
— Open: reserve bandwidth before use
— Closed: use feedback to adjust rates
* Host versus Network support
— Who sets/enforces allocations?
* Window versus Rate based
— How is allocation expressed?

TCP is a closed loop, host-driven, and window-based

35

Additive Increase Multiplicative Decrease

e AIMD is a control law hosts can
use to reach a good allocation

— Hosts additively increase rate while
network is not congested

— Hosts multiplicatively decrease rate
when congestion occurs

— Used by TCP

* Let’s explore the AIMD game ...

37

16

11/12/13

AIMD Game

 Hosts 1 and 2 share a bottleneck
— But do not talk to each other directly

* Router provides binary feedback
— Tells hosts if network is congested

Host 1 E
=
Host 2 E

==

Bottleneck

Rest of
Network

38

AIMD Game (2)

* Each point is a possible allocation

Host 14
1

N

Fair

Optimal
Allocation

Efficient

> Host 2

39

17

11/12/13

AIMD Game (3)

* Al and MD move the allocation

Host 1

1 Congested /

Additive Fair, y=x
N
Increase | Optimal
Multiplicative | Allocation

Decrease ¥ Efficient, x+y=1

0 1 Host 2

40

AIMD Game (4)

* Play the game!

Host 14
1 Congested /
Fair
A starting | {7 ©
point
Efficient
0 1 Host 2

41

18

11/12/13

AIMD Game (5)

* Always converge to good allocation!

Host 14
1 Congested /
4 Fair
. & /X
A starting 47 X
point

Efficient

0 1 Host 2

42

AIMD Sawtooth

* Produces a “sawtooth” pattern
over time for rate of each host
— This is the TCP sawtooth (later)

Host 1 or npyltiplicative Additive

2's Rate Decrease Increase
Time 5

43

19

11/12/13

AIMD Properties

* Converges to an allocation that is
efficient and fair when hosts run it
— Holds for more general topologies

e Other increase/decrease control
laws do not! (Try MIAD, MIMD, AIAD)

* Requires only binary feedback from
the network

44

Feedback Signals

 Several possible signals, with different pros/cons
— We'll look at classic TCP that uses packet loss as a signal

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno Hard to get wrong
Cubic TCP (Linux) Hear about congestion late
Packet delay Compound TCP Hear about congestion early
(Windows) Need to infer congestion
Router TCPs with Explicit Hear about congestion early
indication Congestion Notification Require router support

45

20

11/12/13

TCP Tahoe/Reno

* Avoid congestion collapse without
changing routers (or even receivers)

* |deais to fix timeouts and introduce a
congestion window (cwnd) over the
sliding window to limit queues/loss

* TCP Tahoe/Reno implements AIMD by
adapting cwnd using packet loss as the
network feedback signal

51

TCP Tahoe/Reno (2)

e TCP behaviors we will study:
— ACK clocking
— Adaptive timeout (mean and variance)
— Slow-start
— Fast Retransmission
— Fast Recovery

* Together, they implement AIMD

52

21

11/12/13

Introduction to Computer Networks

TCP Ack Clocking (§6.5.10)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Sliding Window ACK Clock

* Each in-order Ack advances the
sliding window and lets a new
segment enter the network

— ACKs “clock” data segments

2019181716 15141312 11 Data

L
== HHHAHHAH =

Ack1 2 3 456 7 8 910

57

22

11/12/13

Benefit of ACK Clocking

* Consider what happens when sender injects a burst of
segments into the network

»Queue
0 e
A~ e

Fast link Slow (bottleneck) link Fast link

58

Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

Segments
“spread out”
g et
==/ B
@y
Fast link Slow (bottleneck) link Fast link

59

23

11/12/13

Benefit of ACK Clocking (3)

« ACKS maintain the spread back to the original sender

A =

Slow link

Acks maintain spread

60

Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread

— Now sending at the bottleneck link without queuing!

Segments spread »Queue no longer builds
—r
% L] i ==
I _ o
Slow link

61

24

11/12/13

Benefit of ACK Clocking (4)

* Helps the network run with low
levels of loss and delay!

* The network has smoothed out
the burst of data segments

« ACK clock transfers this smooth
timing back to the sender

* Subsequent data segments are
not sent in bursts so do not
gueue up in the network

62

Introduction to Computer Networks

TCP Slow Start (§6.5.10)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

25

11/12/13

TCP Startup Problem

* We want to quickly near the right
rate, cwnd, g, but it varies greatly

— Fixed sliding window doesn’t adapt
and is rough on the network (loss!)

— Al with small bursts adapts cwnd
gently to the network, but might take
a long time to become efficient

67

Slow-Start Solution

* Start by doubling cwnd every RTT
— Exponential growth (1, 2, 4, 8, 16, ...)
— Start slow, quickly reach large values

A 4 A
Fixed

Slow-start

Al

Window (cwnd)

Time

v

68

26

11/12/13

Slow-Start Solution (2)

* Eventually packet loss will occur
when the network is congested

— Loss timeout tells us cwnd is too large
— Next time, switch to Al beforehand
— Slowly adapt cwnd near right value

* |n terms of cwnd:
— Expect loss for cwnd = 2BD+queue
— Use ssthresh = cwnd/2 to switch to Al

69

Slow-Start Solution (3)

 Combined behavior, after first time
— Most time spend near right value

Window A
cwndc
Cwnd|DEA|_ -_l_h """""""""" 7*47
Fixed Al phase
ssthresh ’ 7

Slow-start >
Al

Time

\

70

27

11/12/13

Slow-Start (Doubling) Timeline

TCP Sender TCP Receiver

l ———— Data
/“

:|» 1 RTT, 1 packet

1 RTT, 2 packets

Acknowledgment

Increment cwnd
by 1 packet for
each ACK

1 RTT, 4 packets

»— 1 RTT, 4 packets
(pipe is full)

71

Additive Increase Timeline

TCP Sender TCP Receiver

cwnd=1 L ——— Data

cwnd=3 \
Increment cwnd by 1 I

packet every cwnd
ACKs (or 1 RTT) ownd=4 |

1 RTT, 3 packets

1 RTT, 4 packets

Acknowledgment —-“\' (
cwnd=2 :|»1 RTT, 1 packet
} 1 RTT, 2 packets

~—- 1 RTT, 4 packets
(pipe is full)

72

28

11/12/13

TCP Tahoe (Implementation)

* |nitial slow-start (doubling) phase
— Start with cwnd =1 (or small value)
— cwnd += 1 packet per AcK

* Later Additive Increase phase
— cwnd += 1/cwnd packets per Ack
— Roughly adds 1 packet per RTT

* Switching threshold (initially infinity)
— Switch to Al when cwnd > ssthresh
— Set ssthresh = cwnd/2 after loss
— Begin with slow-start after timeout

73

Timeout Misfortunes

* Why do a slow-start after
timeout?
— Instead of MD cwnd (for AIMD)

74

29

11/12/13

Timeout Misfortunes

Why do a slow-start after timeout?
— Instead of MD cwnd (for AIMD)

Timeouts are sufficiently long that
the Ack clock will have run down

— Slow-start ramps up the Ack clock

We need to detect loss before a
timeout to get to full AIMD

— Done in TCP Reno

75

Introduction to Computer Networks

TCP Fast Retransmit / Fast
Recovery (§6.5.10)

—|—s Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

30

11/12/13

Inferring Loss from ACKs

e TCP uses a cumulative ACK
— Carries highest in-order seqg. number
— Normally a steady advance

* Duplicate ACKs give us hints about
what data hasn’t arrived

— Tell us some new data did arrive,
but it was not next segment

— Thus the next segment may be lost

79

Fast Retransmit

* Treat three duplicate ACKs as a loss
— Retransmit next expected segment

— Some repetition allows for reordering,
but still detects loss quickly

= .

Ack1 234555555

80

31

11/12/13

Fast Retransmit (2)

. —
ﬁct 12 Data 14 was
Ack 12 lost earlier, but
Azk 13 got 15to 20
Ack 13

Data 20

. . Ack 13
Third duplicate
ACK,sosend 14 | *, | 13 Data 14 | Retransmission fills

. / in the hole at 14
ACK jumps after | ack 20

loss is repaired

81

Fast Retransmit (3)

* |t can repair single segment loss
quickly, typically before a timeout

* However, we have quiet time at the
sender/receiver while waiting for the
ACK to jump

* And we still need to MD cwnd ...

82

32

11/12/13

Inferring Non-Loss from ACKs

* Duplicate ACKs also give us hints
about what data has arrived

— Each new duplicate ACK means that
some new segment has arrived

— It will be the segments after the loss

— Thus advancing the sliding window
will not increase the number of
segments stored in the network

83

Fast Recovery

* First fast retransmit, and MD cwnd

* Then pretend further duplicate
ACKs are the expected ACKs

— Lets new segments be sent for ACKs
— Reconcile views when the ACK jumps

S .

Ack1 2 3 4555555

84

33

11/12/13

Fast Recovery (2)

Data 14 was
Ack 12 — lost earlier, but
Third duplicate ﬁct g got 1510 20
ACK, so send 14 Azk 13 Data 20
Set ssthresh, Retransmission fills

More ACKs advance |/Ack 20

) \ Data 21
window; may send L., cen

segments before jump Data 22

Exit Fast Recovery

85

Fast Recovery (3)

* With fast retransmit, it repairs a single
segment loss quickly and keeps the Ack
clock running

* This allows us to realize AIMD

— No timeouts or slow-start after loss, just
continue with a smaller cwnd

* TCP Reno combines slow-start, fast
retransmit and fast recovery

— Multiplicative Decrease is %2

86

34

11/12/13

TCP Reno

A

4 oS | TCP sawtooth | Additive
@ ! _.-=7 increase
£ 351 H Packet
< ; loss
o Thresh.--¢= <
s or Fast Multiplicati
o as ultiplicative
X o5k recovery ACK ClOCk decrease
g running
g 201 Threshold-------=-%======--
5 15 - Threshold --—----%=========-
2 | MD of %, no slow-start |
Lo
2 10
Q
o

5

1 1 1 1 1 1 1 1 1 L 1 L 1 L 1 L 1 L 1 1 1 1 1 1
0 4 8 12 16 20 24 28 32 36 40 44 48

Transmission round (RTTs)

87

TCP Reno, NewReno, and SACK

* Reno can repair one loss per RTT
— Multiple losses cause a timeout

* NewReno further refines ACK heuristics
— Repairs multiple losses without timeout

* SACK is a better idea

— Receiver sends ACK ranges so sender
can retransmit without guesswork

88

35

11/12/13

Introduction to Computer Networks

Explicit Congestion Notification
(§5.3.4, §6.5.10)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Congestion Avoidance vs. Control

Classic TCP drives the network into
congestion and then recovers

— Needs to see loss to slow down

Would be better to use the network
but avoid congestion altogether!

— Reduces loss and delay

But how can we do this?

91

36

11/12/13

Feedback Signals

* Delay and router signals can let us avoid congestion

Signal Example Protocol Pros / Cons
Packet loss Classic TCP Hard to get wrong
Cubic TCP (Linux) Hear about congestion late
Packet delay Compound TCP Hear about congestion early
(Windows) Need to infer congestion
Router TCPs with Explicit Hear about congestion early
indication Congestion Notification Require router support

92

ECN (Explicit Congestion Notification)

* Router detects the onset of congestion via its queue

— When congested, it marks affected packets (IP header)

Packet Congested Marked

/ router / packet
—/>

=5 o >
o
Congestion signal Host

93

37

11/12/13

ECN (2)

* Marked packets arrive at receiver; treated as loss

— TCP receiver reliably informs TCP sender of the congestion

Packet Congested Marked
/ / router / packet
—
[— e Lt I
Host = 7777 Congestionsignal Host

94

ECN (3)

* Advantages:
— Routers deliver clear signal to hosts
— Congestion is detected early, no loss
— No extra packets need to be sent

* Disadvantages:
— Routers and hosts must be upgraded

95

38

11/12/13

Introduction to Computer Networks

TCP Variants

—I—s' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

TCP Variants

* There are many different strains of TCP
including:
— Loss-based congestion control: Reno, BIC, Cubic

— Delay-based congestion control: Vegas, Veno,
Westwood

— High-speed congestion control: Scalable, HighSpeed,
HTCP

39

11/12/13

Delay Based Congestion Control

e Basic idea:

in the routers between source and
destination

— Additively decrease the sending rate when incipient

congestion is detected

98

TCP Vegas
* Expected = cwnd/BaseRTT
* Actual = cwnd/RTT
* DIFF = (Expected-Actual)

BaseRTT: the minimum of all measured RTT
if (DIFF*BaseRTT <a)

cwnd =cwnd + 1
else if (DIFF*BaseRTT >) RTT: the actual round-trip time of a tagged packet

cwnd =cwnd — 1

else cwnd = cwnd o and B are constant values
that are set by experimentation

CSE 461 University of Washington

40

11/12/13

TCP Vegas

 Modified Slow Start

— Try to find the correct window size without incurring
a loss

— exponentially increasing its window every RTT
and using the other RTT to calculate DIFF

— As soon as Vegas detects queue buildup during slow
start, it transitions to congestion avoidance

100

TCP Veno

* TCP Vegas has some limitations:

— Not robust to RTT changes
— Does not compete well with loss-based congestion
techniques

* TCP Veno is designed to address these
limitations:
— Combines Vegas with Reno
— Exponential start as in Reno
— Modifies additive increase/multiplicative decrease phases

41

11/12/13

TCP Veno Algorithm

* Multiplicative decrease algorithm

if (DIFF*BaseRTT < 3) //frandom loss due to bit errors is most
/Mikely to have occurred
ssthresh = cwnd,,gs * (4/5);
else

ssthresh = cwnd,yss /2; //congestive loss is most
/likely to have occurred

103

TCP Veno

* Additive increase algorithm

— Reduce increments when buffers are getting filled
up; more aggressive than Vegas, but less
aggressive than Reno

if (DIFF*BaseRTT < B) // available bandwidth under-utilized
cwnd=cwnd+1/cwnd when every new ack received

else if (DIFF*BaseRTT > B) // available bandwidth fully utilized
cwnd=cwnd+1/cwnd when every other new ack received

104

42

11/12/13

TCP Westwood

ir: i

Packet pair: ar Packet train:
effective under random loss,

overestimates under congestion

fair estimate under congestion,
underestimates under random loss

Under No Under
Congestion Ty Congestion Tk

® To obtain rate estimate: adapt the sample interval T,
according to congestion level
® Need to be careful about dupacks, delayed acks, etc.

105

High BDP Variants

* Represents a class of algorithms that are
much more aggressive than traditional TCP

Traditional TCP Scalable TCP
cwnd € cwnd + 1/cwnd; cwnd € cwnd + 0.01;
- if no loss was detected - if no loss was detected
cwnd € cwnd/2; cwnd < cwnd*0.875;
- if a loss was detected - if a loss was detected

43

11/12/13

Comparison

Traditional TCP Scalable TCP
Rate — C Rate ! -log(1-h)
(pkts/RTT) P2 (pkts/RTT) i1 log(1+a)
c I c |
bC
c
2 (1-bjc
c
2
Time (RTT) Time (RTT)

Cubic

* Two key modifications:

— Cubic window growth with inflection point at congestion
window at previous loss

< Steadv State Behavior ‘/
‘max

Fig. 2: The Window Growth Function of CUBIC

— Safe exit for slow start (i.e., transition from exponential
growth to linear growth)

44

11/12/13

Introduction to Computer Networks

PCP — Probe Control Protocol

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Resource Allocation Problem

How to allocate network bandwidth resources when multiple flows share common
links?
Goals:
— Minimize transfer time
Negligible packet loss & low queue variability
Resources are fully allocated if there is sufficient demand

Stable system even under high loads
Fairness

45

11/12/13

TCP: Endpoint Congestion Control

* Allocate resources without requiring network
support

* “Try and Backoff” strategy:

— Start with low transfer rate, ramp up rate

— FIFO routers drop packets when queues fill up

— Congestion inferred from packet loss
— Endpoint responds to packet loss by throttling rate

Rate

Try and Backoff strategy:

A

TCP Endpoint Congestion Control

\

loss
loss loss
I e - — SRR [g Channel

Capacity

A
7

Time

112

46

11/12/13

Limits of Try-and-Backoff Strategy

* Intheory, the link capacity is fully utilized for long flows, but
— Initial ramp-up takes up most of the response time

— Channel capacity is left unused
* If “n” is capacity, takes log(n) steps for the initial ramp-up
* Wasted capacity during that period: O(n log(n))

— At the tail of the ramp-up, the rate overshoots the channel capacity
* Causes multiple packet losses; worse with multiple flows

e Could start with higher transfer rates, but could result in higher packet
loss/congestion

Network-assisted Congestion Control

1) Routers provide feedback to end-systems
= Add TCP-specific support to routers
= Signal end-hosts to reduce their sending rates

2) Routers explicitly allocate bandwidth to flows
= Endpoints use a “request and set” strategy
= Routers enforce resource limits
= Attains flow isolation

Problem: makes routers complicated and hinders adoption

47

11/12/13

Previous Work

Endpoint Router Support

TCP, Vegas,

Try and RAP, FastTCP, DecBit, ECN,

Backoff Scalable TCP, RED, AQM
HighSpeed TCP

Request 5 ATM, XCP,

and Set ' WFQ, RCP

Probe Control Protocol (PCP)

* Probe for required bandwidth using short, non-intrusive probes
* |f bandwidth is available, send at the desired uniform rate

- Sending at desired rate is “safe”

Probe

Rate

Probe

Probe

A\ 4

Time

e N A Channel

Capacity

Probe is a request, successful probe sets the sending rate, other

flows cannot acquire the allocated bandwidth

48

11/12/13

PCP Mechanisms

* Probes: how to check for available bandwidth
* Probe control: how to vary the requests?

* Rate compensation: deal with queue build-ups

Probes

* Send packet train spaced at an interval to achieve desired rate
— Currently, five packets whose size could be varied

* Check for queuing delays based on reception times

49

11/12/13

Probe Control

* Base protocol:
— Start with a baseline rate (one maximum sized packet per round-trip)
— If probe succeeds, double the requested bandwidth
— If probe fails, halve the requested bandwidth

— If probed rate falls below baseline rate:
* Keep probed rate constant
* Issue probes less frequently (exponential back-off)

e Augmented with history:
— Endpoint keeps track of previously used rates for different paths
— Directly jumps to probe for a rate based on history

Rate Compensations

* Queue build-ups could occur:
— Probes, even though they are short, could result in additional queueing

— Almost simultaneous probes could allocate the same bandwidth to two
flows

— Errors in determining success of a probe could result in too much load

* Solution: rate compensation
— Monitor packet delays
— Notice queue-buildups
— Slow down the transmission rate to drain queue

50

11/12/13

Performance

* User-level implementation tested on WAN infrastructure
— EMULAB system, twenty nodes
— 250KB transfers between every pair of nodes
— PCP vs. TCP vs. four concurrent PCP transmissions

100

80 A

60 A

——PCP
40 A ———a-pcP
——TCP

Percentage of flows

20 A

Transfer Time

Performance

Is PCP getting its performance benefits by being aggressive to
TCP traffic?

How does the transfer time vary with flow size?

2000

-
[¢)]
o
o
1

—__TCP w/4-PCP
—TCP
—__4A-PCP

PCP

1000 -

500 41

Transfer time (ms)

0 200 400 600 800 1000
Flow size (KB)

51

11/12/13

Summary

* Smart endpoint solution that mimics centralized control
— More suited for the current day Internet

— Also leverages a number of hardware developments: better
timers, more capable end-hosts, ...

— Combines innovations in networking software: available
bandwidth measurement, delay-based rate adjustments, ...

* In-kernel implementation of PCP for Linux

52

