11/4/13

Introduction to Computer Networks

Transport Layer Overview

(§6.1.2-6.1.4)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Transport Layer Services

* Provide different kinds of data
delivery across the network to

applications

Unreliable

Reliable

Messages |Datagrams (UDP)

Bytestream

Streams (TCP)

11/4/13

Comparison of Internet Transports
* TCP is full-featured, UDP is a glorified packet

TCP (Streams) UDP (Datagrams)
Connections Datagrams
Bytes are delivered once, Messages may be lost,
reliably, and in order reordered, duplicated
Arbitrary length content Limited message size
Flow control matches Can send regardless
sender to receiver of receiver state
Congestion control matches Can send regardless
sender to network of network state

154

User Datagram Protocol (UDP)

e Used by apps that don’t want
reliability or bytestreams
— Voice-over-IP (unreliable)
— DNS, RPC (message-oriented)
— DHCP (bootstrapping)

(If application wants reliability and
messages then it has work to do!)

11/4/13

Client (host 1)

1: socket

4: sendto

5: recvfrom?*

7: close

Datagram Sockets

Time

request

reply

Server (host 2)

1: socket
2: bind
3: recvfrom*

6: sendto

7: close

*= call blocks

165

UDP Header

* Uses ports to identify sending and
receiving application processes

e Datagram length up to 64K
* Checksum (16 bits) for reliability

32 Bits

Source port

Destination port

UDP length

UDP checksum

167

11/4/13

Introduction to Computer Networks

Connection Establishment
(§6.5.6, §6.5.7, §6.2.3)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Connection Establishment

* Both sender and receiver must be ready
before we start the transfer of data

— Need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)

* This is signaling

— It sets up state at the endpoints
— Like “dialing” for a telephone call

171

11/4/13

Three-Way Handshake

Used in TCP; opens connection for
data in both directions

Each side probes the other with a
fresh Initial Sequence Number (ISN)
— Sends on a SYNchronize segment
— Echo on an ACKnowledge segment

Chosen to be robust even against
delayed duplicates

Active party

(client)

Passive party
(server)

172

Three-Way Handshake (2)

Three steps: Active party
. (client)
— Client sends SYN(x)] 1
S
— Server replies with SYN(y)ACK(x+1) W}
— Client replies with ACK(y+1) EQ;, R
— SYNs are retransmitted if lost M
3
SEQ: .
Sequence and ack numbers L Ack.

carried on further segments

Passive party
(server)

173

11/4/13

Connection Release

* Orderly release by both parties when
done
— Delivers all pending data and “hangs up”
— Cleans up state in sender and receiver

* Key problem is to provide reliability
while releasing

— TCP uses a “symmetric” close in which
both sides shutdown independently

183

TCP Connection Release

* Two steps: Active party Passive party

— Active sends FIN(x), passive ACKs

— Passive sends FIN(y), active ACKs
— FINs are retransmitted if lost

e Each FIN/ACK closes one
direction of data transfer

184

11/4/13

TCP Connection Release (2)

* Two steps: Active party Passive party

— Active sends FIN(x), ACKs

— Passive sends FIN(y), ACKs 1

)(-\—1\

\(:

. . o=y, RC

— FINs are retransmitted if lost %
2

* Each FIN/ACK closes one %

direction of data transfer

185

Introduction to Computer Networks

Sliding Windows (§3.4, §6.5.8)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

11/4/13

Sliding Window

* Generalization of stop-and-wait

— Allows W packets to be
outstanding

— Can send W packets per RTT (=2D)

R

— Pipelining improves performance
— Need W=2BD to fill network path

196

Sliding Window Protocol

* Many variations, depending on
how buffers, acknowledgements,
and retransmissions are handled

* Go-Back-N »
— Simplest version, can be inefficient

* Selective Repeat »
— More complex, better performance

11/4/13

Sliding Window — Sender

* Sender buffers up to W segments

until they are acknowledged

— LFS=LAST FRAME SENT, LAR=LAST ACK REC’'D

— Sends while LFS—-LAR < W

Sliding W=5 _
Window l/Avallable
Acked U|nacked Un avai‘labl‘e
f f ;
LAR LFS seq. number

200

* Transport accepts another segment

Sliding Window — Sender (2)

of data from the Application ...

— Transport sends it (as LFS—LAR = 5)

W=5
A
Acked U|nacked Un avai‘labl‘e
7 1 ;
LAR LFS seq. number

201

11/4/13

Sliding Window — Sender (3)

* Next higher ACK arrives from peer...
— Window advances, buffer is freed
— LFS—-LAR = 4 (can send one more)
W=5

A ,Available
2\
Acked WUnacked Unavalil.
1 f ;
LAR LFS seq. number

202

Sliding Window — Go-Back-N

* Receiver keeps only a single packet
buffer for the next segment

— State variable, LAS = LAST ACK SENT

* Onreceive:

— If seg. number is LAS+1, accept and
pass it to app, update LAS, send ACK

— Otherwise discard (as out of order)

10

11/4/13

Sliding Window — Selective Repeat

Receiver passes data to app in order,
and buffers out-of-order segments to
reduce retransmissions

ACK conveys highest in-order segment,
plus hints about out-of-order segments

TCP uses a selective repeat design;
we’ll see the details later

204

Sliding Window — Selective Repeat (2)

Buffers W segments, keeps state
variable, LAS = LAST ACK SENT

On receive:
— Buffer segments [LAS+1, LAS+W]

— Pass up to app in-order segments
from LAS+1, and update LAS

— Send ACK for LAS regardless

11

11/4/13

Sliding Window — Retransmissions

Go-Back-N sender uses a single timer
to detect losses

— On timeout, resends buffered packets
starting at LAR+1

Selective Repeat sender uses a timer
per unacked segment to detect losses
— On timeout for segment, resend it
— Hope to resend fewer segments

206

Problem

 Sliding window uses pipelining to
keep the network busy
— What if the receiver is overloaded?

- S-

treaming video

Big Iron Wee Mobile

213

12

11/4/13

Sliding Window — Receiver

e Consider receiver with W buffers

— LAS=LAST ACK SENT, app pulls in-order
data from buffer with recv() call

Sliding _
Window W=5
Finished Acceptable Too high
) —
LAS seq. number

214

Sliding Window — Receiver (2)

* Suppose the next two segments
arrive but app does not call recv()

W=5 Acceptable
A
K
Finished Too high
T .
LAS seq. number

215

13

11/4/13

Sliding Window — Receiver (3)

* Suppose the next two segments
arrive but app does not call recv()
— LAS rises, but we can’t slide window!

W=5 Acceptable
A
K
Finished |Acked Too high
T .
LAS seq. number

216

Sliding Window — Receiver (4)

 |f further segments arrive (even in
order) we can fill the buffer
— Must drop segments until app recvs!
W=5 Nothing
A A
o cceptable
Fi‘nished Acked| Acked | Too High

) —
LAS seq. number

217

14

11/4/13

Sliding Window — Receiver (5)

* App recv() takes two segments
— Window slides

W=5 Acceptable
A /

(¥
nish)ed Acked Toop high

i

) —
LAS seq. number

218

Flow Control

* Avoid loss at receiver by telling
sender the available buffer space

— WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
A
K
Finished |Acked - Too high
1 .
LAS seq. number

219

15

11/4/13

Flow Control (2)

* Sender uses the lower of the sliding
window and flow control window
(WIN) as the effective window size

WIN=3
Fi‘nished Acked ﬁ Too high
T .
LAS seq. number

220

Flow Control (3)

Application Sender
* TCP-style example - e S
~ sEq/Ack sliding window *_A_@E@_ﬂ;_@;};:_
— Flow control with win &5 —— TS
— SEQ + length < ACK+WIN -
— 4KB buffer at receiver -
— Circular buffer of bytes ==5wx [
R TS

B

Receiver Receiver's

o

< <
B
il

buffer
4K

Empty

Application
reads 2K

16

11/4/13

Introduction to Computer Networks

Retransmission Timeouts
(§6.5.9)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Retransmissions

* With sliding window, the strategy
for detecting loss is the timeout
— Set timer when a segment is sent
— Cancel timer when ack is received

— If timer fires, retransmit data as lost

Retransmit!

224

17

11/4/13

Timeout Problem

* Timeout should be “just right”
— Too long wastes network capacity
— Too short leads to spurious resends
— But what is “just right”?

* Easyto set on a LAN (Link)
— Short, fixed, predictable RTT

* Hard on the Internet (Transport)
— Wide range, variable RTT

225

Example of RTTs

1000 | BCN->SEA->BCN

D
o
o

=

N
o
o

Round Trip Time (ms)
R

100

0 20 40 60 80 100 120 140 160Sec@nds 200

226

18

11/4/13

Example of RTTs (2)

1000 7| BCN->SEA->BCN
— 90 Variation due to queuing at routers,
£ 800 changes in network paths, etc.
g 700
= 600 'I
g— 500
= 400
2 i
S 300 '
2 200
100 Propagation (+transmission) delay = 2D
0 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160Sec@Ads 200
227
1000
900 Timer too high!
(%]
£ 800 A
@ 700 Need to adapt to the |-
§ 600 i network conditions |-
2 500 !,
I_; 400 A _ualt] ' Timer too low! ——
o LTV A L YT Y WO Y
£ 200
100
0

0 20 40 60 80 100 120 140 16(5ectrads 200

228

19

11/4/13

Adaptive Timeout

Keep smoothed estimates of the RTT (1)
and variance in RTT (2)
— Update estimates with a moving average
1. SRTTy,; = 0.9*SRTT, + 0.1*RTT,,,
2. Svary,; =0.9*Svary + 0.1*|RTT,,,— SRTTy,,|

Set timeout to a multiple of estimates
— To estimate the upper RTT in practice
— TCP Timeout, = SRTT + 4*Svar,

229

Example of Adaptive Timeout

1000

900

800

700

600

500 | SRTT

RTT (ms)

400
300 |
200 -

/

100 Svar

0

0 20 40 60 80 100 120 140 16®ecarstls 200

230

20

11/4/13

Example of Adaptive Timeout (2)

1000 T |
00 - .Eary Y.
goo ~ Umeout E‘Q} - Timeout (SRTT + 4*Svar)
700 &
g 600 -
= 500 v
= {
o 400 7 i N g
300 | | < <
200
0 T T T T T T

0 20 40 60 80 100 120 140 16®ecarstls 200

Introduction to Computer Networks

Congestion Overview
(§6.3, §6.5.10)

% Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

21

11/4/13

Topic

* Understanding congestion, a
“traffic jam” in the network

— Later we will learn how to control it

What'’s the hold up?

SES

247

Nature of Congestion

* Simplified view of per port output queues
— Typically FIFO (First In First Out), discard when full

Router
Router - |
e - — [Q—
—b —
3 LN

1 \Queued
(FIFO) Queue packets

249

22

11/4/13

Nature of Congestion (2)

* Queues help by absorbing bursts
when input > output rate

e But if input > output rate
persistently, queue will overflow

— This is congestion

* Congestion is a function of the traffic
patterns — can occur even if every
link have the same capacity

250

Effects of Congestion

* What happens to performance as we increase the load?

A A

) Capacity

& 0
82} c
(] o
3 5
© n
3 ~—
5)
Q. [0)]
© ()]
o

o

0]

P >
Offered load (packets/sec) Offered load (packets/sec)

251

23

11/4/13

Effects of Congestion (2)

* What happens to performance as we increase the load?

A A
) Capacity
3 / 2 Onset of
2 ,‘/\/— . € | congestion
I Desired 8
P YA response Q A
2 ’) g /\
5 ?\\Congestion 5 ___._/
o collapse 3
3
()
= >
Offered load (packets/sec) Offered load (packets/sec)

252

Effects of Congestion (3)

* As offered load rises, congestion occurs
as queues begin to fill:
— Delay and loss rise sharply with more load
— Throughput falls below load (due to loss)

— Goodput may fall below throughput (due
to spurious retransmissions)

* None of the above is good!

— Want to operate network just 4
before the onset of congestion A

24

11/4/13

Bandwidth Allocation

* Important task for network is to
allocate its capacity to senders
— Good allocation is efficient and fair

 Efficient means most capacity is
used but there is no congestion

* Fair means every sender gets a
reasonable share the network

254

Bandwidth Allocation (2)

* Why is it hard? (Just split equally!)
— Number of senders and their offered
load is constantly changing

— Senders may lack capacity in different
parts of the network

— Network is distributed; no single party
has an overall picture of its state

25

11/4/13

Bandwidth Allocation (3)

* Key observation:

— In an effective solution, Transport and
Network layers must work together

* Network layer witnesses congestion
— Only it can provide direct feedback

* Transport layer causes congestion
— Only it can reduce offered load

256

Bandwidth Allocation (4)

e Solution context:

— Senders adapt concurrently based on
their own view of the network

— Design this adaption so the network
usage as a whole is efficient and fair

— Adaption is continuous since offered
loads continue to change over time

257

26

11/4/13

Introduction to Computer Networks

Fairness of Bandwidth
Allocation (§6.3.1)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Topic

* What’s a “fair” bandwidth allocation?
— The max-min fair allocation

s O

27

11/4/13

Recall

* We want a good bandwidth
allocation to be fair and efficient

— Now we learn what fair means

e Caveat: in practice, efficiency is
more important than fairness

Efficiency vs. Fairness

e Cannot always have both!

— Example network with traffic
A—->B,B>Cand A>C

— How much traffic can we carry?

262

28

11/4/13

Efficiency vs. Fairness (2)

* If we care about fairness:

— Give equal bandwidth to each flow
— A-2>B: % unit, B2>C: %, and A>C,
— Total traffic carried is 1 % units

g1 oo

263

Efficiency vs. Fairness (3)

 |f we care about efficiency:
— Maximize total traffic in network
— A->B: 1 unit, B>C: 1, and A>C,0
— Total traffic rises to 2 units!

a1 ooy

264

29

11/4/13

The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?

— A—>C uses more network resources
(two links) than A>B or B>C

— Host A sends two flows, B sends one

* Not productive to seek exact fairness
— More important to avoid starvation
— “Equal per flow” is good enough

265

Generalizing “Equal per Flow”

* Bottleneck for a flow of traffic is
the link that limits its bandwidth
— Where congestion occurs for the flow
— For A=>C, link A-B is the bottleneck

A B C
Y 1 10

Bottleneck

30

11/4/13

Generalizing “Equal per Flow” (2)

* Flows may have different
bottlenecks
— For A=>C, link A-B is the bottleneck
— For B=>C, link B—C is the bottleneck

— Can no longer divide links equally ...

A B C
1 10

267

Max-Min Fairness

* Intuitively, flows bottlenecked on a
link get an equal share of that link

 Max-min fair allocation is one that:

— Increasing the rate of one flow will
decrease the rate of a smaller flow

— This “maximizes the minimum” flow

31

11/4/13

Max-Min Fairness (2)

* To find it given a network, imagine
“pouring water into the network”

1.
2.

Start with all flows at rate O

Increase the flows until there is a
new bottleneck in the network

Hold fixed the rate of the flows that
are bottlenecked

Go to step 2 for any remaining flows

269

Max-Min Example

e Example: network with 4 flows, links equal bandwidth
— What is the max-min fair allocation?

A= %\R?A/:

270

32

11/4/13

Max-Min Example (2)

* When rate=1/3, flows B, C, and D bottleneck R4—R5
— Fix B, C, and D, continue to increase A

A
A - N i
R1 R3 ‘B
Be Bottleneck
) _ -C
Cc¢ ! i_’\.
Do R4 R6 D
Max-Min Example (3)
* When rate=2/3, flow A bottlenecks R2—R3. Done.
Bottleneck
- A
A= -, '
R1 R ~Y R3 ‘B
Be Bottlenec\lf
- ~ /- . e
Cc | B -

b. R4 ~ RS ‘R6 *D

272

33

11/4/13

Max-Min Example (4)

* End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 full
— Other links have extra capacity that can’t be used

— 2/3 283 ?_2:

273

Adapting over Time

* Allocation changes as flows start and stop

Bandwidth allocation

1

0.5

o

*\ Flow 1

== & | Flow 2 stops

N T <

I
i
I
I,' ¢ Flow 3 starts
|

n
[e]
=
N
»
—
o
-+
@

1 4 9 Time

274

34

11/4/13

Adapting over Time (2)

A Flow 1 slows when Flow 1 speeds up
c 1 Flow 2 starts when Flow 2 stops
o
§ 4\FI 1
ow ..

= Flow 3 limit
£ 05 is elsewhere
2 I \ 1 /
8 : Flow 2 starts -

|' y— Flow 3 starts 1

0 ! [i ~
1 4 9 Time

275

Introduction to Computer Networks

Additive Increase
Multiplicative Decrease (AIMD)

(§6.3.2)

== Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

35

11/4/13

Recall

Want to allocate capacity to senders
— Network layer provides feedback
— Transport layer adjusts offered load
— A good allocation is efficient and fair

How should we perform the allocation?
— Several different possibilities ...

278

Bandwidth Allocation Models

Open loop versus closed loop

— Open: reserve bandwidth before use
— Closed: use feedback to adjust rates
Host versus Network support

— Who sets/enforces allocations?
Window versus Rate based

— How is allocation expressed?

TCP is a closed loop, host-driven, and window-based

279

36

11/4/13

Additive Increase Multiplicative

Decrease

e AIMD is a control law hosts can
use to reach a good allocation

— Hosts additively increase rate while
network is not congested

— Hosts multiplicatively decrease
rate when congestion occurs

— Used by TCP

* Let’s explore the AIMD game ...

AIMD Game

* Hosts 1 and 2 share a bottleneck
— But do not talk to each other directly

* Router provides binary feedback
— Tells hosts if network is congested

y tl; Bottleneck
0s | 1
= \ = Rest of
1 Network
Host2 | 1 Router
A

282

37

11/4/13

* Each poin
Host 14
1

AIMD Game (2)

t is a possible allocation

Fair

Optimal
Allocation

Efficient
> Host 2

283

AIMD Game (3)

Al and MD move the allocation

Host 1

1 Congested /

Additive Fair, y=x
N
Increase | Optimal
Multiplicative | Allocation

Decrease Efficient, x+y=1

0 1 Host 2

284

38

11/4/13

AIMD Game (4)

* Play the game!

Host 14
1 Congested /
Fair
A starting | {7 ©
point
Efficient
0 1 Host 2

285

AIMD Game (5)

* Always converge to good allocation!
Host 14

1 Congested /

N Fair
: & /X
A starting _{7 X
point

Efficient

> Host 2

39

11/4/13

AIMD Sawtooth

* Produces a “sawtooth” pattern
over time for rate of each host

— This is the TCP sawtooth (later)

Host 1 or pyltiplicative Additive
2’s Rate

Decrease Increase
Time _

287

AIMD Properties

* Converges to an allocation that is
efficient and fair when hosts run it

— Holds for more general topologies
e Other increase/decrease control
laws do not! (Try MIAD, MIMD, AIAD)

* Requires only binary feedback
from the network

40

11/4/13

Feedback Signals

* Several possible signals, with different pros/cons
— We'll look at classic TCP that uses packet loss as a signal

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno Hard to get wrong
Cubic TCP (Linux) Hear about congestion late
Packet delay Compound TCP Hear about congestion early
(Windows) Need to infer congestion
Router TCPs with Explicit Hear about congestion early
indication Congestion Notification Require router support

289

TCP Tahoe/Reno

* Avoid congestion collapse without
changing routers (or even receivers)

* Ideais to fix timeouts and introduce a
congestion window (cwnd) over the
sliding window to limit queues/loss

* TCP Tahoe/Reno implements AIMD by
adapting cwnd using packet loss as the

network feedback signal

41

11/4/13

TCP Tahoe/Reno (2)

* TCP behaviors we will study:
— ACK clocking
— Adaptive timeout (mean and variance)
— Slow-start
— Fast Retransmission
— Fast Recovery

* Together, they implement AIMD

296

Introduction to Computer Networks

TCP Ack Clocking (§6.5.10)

—I—S Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

42

11/4/13

Sliding Window ACK Clock

* Each in-order Ack advances the
sliding window and lets a new
segment enter the network

— Acks “clock” data segments

20191817161514 1312 11 Data

o0
== - HHHHH =

Ack1 2 34567 8910

Benefit of ACK Clocking

* Consider what happens when sender injects a burst of
segments into the network

» Queue
oo ’ ’\ _
<« 4
Fast link Slow (bottleneck) link Fast link

43

11/4/13

Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

Segments
“spread out”
4 —

\
O/

Fast link Slow (bottleneck) link Fast link

303

Benefit of ACK Clocking (3)

« ACKS maintain the spread back to the original sender

g .

ij{iﬂu_cﬁg

J

Slow link

Y
Acks maintain spread

44

11/4/13

Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread
— Now sending at the bottleneck link without queuing!

Segments spread »Queue no longer builds
Ol
mJE at
%Iﬁ<\\/ N ,:7,,,\//—@
D @ @
Slow link

305

Benefit of ACK Clocking (4)

* Helps the network run with low
levels of loss and delay!

* The network has smoothed out
the burst of data segments

« ACK clock transfers this smooth
timing back to the sender

* Subsequent data segments are
not sent in bursts so do not
gueue up in the network

306

45

11/4/13

Introduction to Computer Networks

TCP Slow Start (§6.5.10)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

TCP Startup Problem

* We want to quickly near the right
rate, cwnd,pg, , but it varies greatly

— Fixed sliding window doesn’t adapt
and is rough on the network (loss!)

— Al with small bursts adapts cwnd
gently to the network, but might take
a long time to become efficient

311

46

11/4/13

Slow-Start Solution

 Start by doubling cwnd every RTT
— Exponential growth (1, 2, 4, 8, 16, ...)
— Start slow, quickly reach large values

N 4\ ¢

Fixed

Slow-start

Al

Window (cwnd)

Time

v

312

Slow-Start Solution (2)

* Eventually packet loss will occur
when the network is congested

— Loss timeout tells us cwnd is too large
— Next time, switch to Al beforehand
— Slowly adapt cwnd near right value

* |n terms of cwnd:
— Expect loss for cwnd = 2BD+queue
— Use ssthresh = cwnd/2 to switch to Al

47

11/4/13

Slow-Start Solution (3)

 Combined behavior, after first time
— Most time spend near right value

Window A
cwnd
cwnd pea; "l.t """"""""""" 7‘47
Fixed Al phase
ssthresh ’ 7

Slow-start >
Al

Time

N

314

Slow-Start (Doubling) Timeline

TCP Sender TCP Receiver

L ——— Data
(‘
Acknowledgment

Increment cwnd
by 1 packet for
each ACK

1 RTT, 4 packets

»— 1 RTT, 4 packets
(pipe is full)

48

11/4/13

Additive Increase Timeline

TCP Sender TCP Receiver
cwnd=1 ———— Data
(
Acknowledgment “.\' B
cwnd=2 — 1 RTT, 1 packet

— 1 RTT, 2 packets

cwnd=3

Increment cwnd by
1 packet every cwnd
ACKs (or 1 RTT) ownd=4 1

s — 1RTT, 3 packets

} 1 RTT, 4 packets

cwnd=5 — 1 RTT, 4 packets

(pipe is full)

316

TCP Tahoe (Implementation)

* Initial slow-start (doubling) phase
— Start with cwnd =1 (or small value)
— cwnd += 1 packet per Ack

* Later Additive Increase phase
— cwnd += 1/cwnd packets per Ack
— Roughly adds 1 packet per RTT

* Switching threshold (initially infinity)
— Switch to Al when cwnd > ssthresh
— Set ssthresh = cwnd/2 after loss
— Begin with slow-start after timeout

317

49

11/4/13

Timeout Misfortunes

Why do a slow-start after timeout?
— Instead of MD cwnd (for AIMD)

Timeouts are sufficiently long that
the Ack clock will have run down

— Slow-start ramps up the Ack clock

We need to detect loss before a
timeout to get to full AIMD

— Done in TCP Reno

318

Introduction to Computer Networks

TCP Fast Retransmit / Fast
Recovery (§6.5.10)

—|—s Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

50

11/4/13

Inferring Loss from ACKs

* TCP uses a cumulative ACK
— Carries highest in-order seq. number
— Normally a steady advance

* Duplicate ACKs give us hints about
what data hasn’t arrived

— Tell us some new data did arrive,
but it was not next segment

— Thus the next segment may be lost

322

Fast Retransmit

* Treat three duplicate ACKs as a loss
— Retransmit next expected segment

— Some repetition allows for reordering,
but still detects loss quickly

= EEEREEEE,.

Ack1 234555555

51

11/4/13

Fast Retransmit (2)

. —
QC:: 12 Data 14 was
Ack - lost earlier, but
Aﬁk s got 15 to 20
Ack 13

Data 20

. . Ack 13
Third duplicate
ACK,sosend 14 | *, | 13 Data 14 | Retransmission fills

- / in the hole at 14
ACK jumps after | ack 20

loss is repaired

324

Fast Retransmit (3)

* It can repair single segment loss
quickly, typically before a timeout

* However, we have quiet time at the
sender/receiver while waiting for the
ACK to jump

* And we still need to MD cwnd ...

52

11/4/13

Inferring Non-Loss from ACKs

* Duplicate ACKs also give us hints
about what data has arrived

— Each new duplicate ACK means that
some new segment has arrived

— It will be the segments after the loss

— Thus advancing the sliding window
will not increase the number of
segments stored in the network

326

Fast Recovery

* First fast retransmit, and MD cwnd

* Then pretend further duplicate
ACKs are the expected ACKs

— Lets new segments be sent for ACKs
— Reconcile views when the ACK jumps

= naEnE.

Ack1 2 3 4555555

327

53

11/4/13

Fast Recovery (2)

Data 14 was
Ack12 & lost earlier, but
Third duplicate Ack13 got 15 to 20
ACK, so send 14 [\ Ack13 Data 20
Ack 13
Set ssthresh, Retransmission fills
cwnd = cwnd/2 o Data 14| in the hole at 14
More ACKs advance |/Ack 20 Data 21
window; may send L \ Data 22
segments before jump Exit Fast Recovery

328

Fast Recovery (3)

* With fast retransmit, it repairs a single
segment loss quickly and keeps the Ack
clock running

* This allows us to realize AIMD

— No timeouts or slow-start after loss, just
continue with a smaller cwnd

* TCP Reno combines slow-start, fast
retransmit and fast recovery

— Multiplicative Decrease is %

54

11/4/13

40

25

TCP Reno

| TCP sawtooth |

35 ! Packet
; loss
Thresh.--4=- <
% F; Multiplicati
ast ultiplicative
recovery ACK clock decrease

running

Additive
_--% increase
.

Congestion window (KB or packets)

20 Threshold-=======-%====-=-~
15 : Threshold --—-----%========-
| MD of %, no slow-start |
10
5
1 1 1 1 L 1 | 1 1 1 1 1 1 1 [1 1 1 1 | 1 1 1 1
0 4 8 12 16 20 24 28 32 36 40 44 48

Transmission round (RTTs)

330

TCP Reno, NewReno, and SACK

Reno can repair one loss per RTT
— Multiple losses cause a timeout

NewReno further refines ACK heuristics
— Repairs multiple losses without timeout

SACK is a better idea

— Receiver sends ACK ranges so sender
can retransmit without guesswork

55

11/4/13

Introduction to Computer Networks

Explicit Congestion Notification
(§5.3.4, §6.5.10)

—I—S' Computer Science & Engineering

WA UNIVERSITY of WASHINGTON

Congestion Avoidance vs. Control

Classic TCP drives the network into
congestion and then recovers

— Needs to see loss to slow down

Would be better to use the network
but avoid congestion altogether!

— Reduces loss and delay

But how can we do this?

56

11/4/13

Feedback Signals

* Delay and router signals can let us avoid congestion

Signal Example Protocol Pros / Cons
Packet loss Classic TCP Hard to get wrong
Cubic TCP (Linux) Hear about congestion late
Packet delay Compound TCP Hear about congestion early
(Windows) Need to infer congestion
Router TCPs with Explicit Hear about congestion early
indication Congestion Notification Require router support

335

ECN (Explicit Congestion Notification)

* Router detects the onset of congestion via its queue

— When congested, it marks affected packets (IP header)

Congestion signal

Packet Congested Marked
/ router / packet
—/
I DTS P —/>

336

57

11/4/13

ECN (2)

* Marked packets arrive at receiver; treated as loss
— TCP receiver reliably informs TCP sender of the congestion

Packet Congested Marked
/ / router / packet
—
[— s Lt I
Host = 7777 Congestionsignal Host

337

ECN (3)

* Advantages:
— Routers deliver clear signal to hosts
— Congestion is detected early, no loss
— No extra packets need to be sent

* Disadvantages:
— Routers and hosts must be upgraded

338

58

