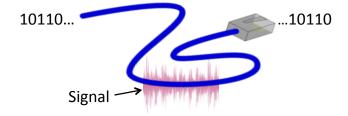
Introduction to Computer Networks

Overview of the Physical Layer



Where we are in the Course

 Beginning to work our way up starting with the Physical layer

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry analog signals
 - We want to send digital bits


3

Topics

- 1. Properties of media
 - Wires, fiber optics, wireless
- 2. Simple signal propagation
 - Bandwidth, attenuation, noise
- 3. Modulation schemes
 - Representing bits, noise
- 4. Fundamental limits
 - Nyquist, Shannon

Simple Link Model

- We'll end with abstraction of a physical channel
 - Rate (or bandwidth, capacity, speed) in bits/second
 - Delay in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

5

Message Latency

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"
 - Propagation delay: time for bits to propagate across the wire
 - Combining the two terms we have:

Message Latency

- <u>Latency</u> is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

- Propagation delay: time for bits to propagate across the wire

P-delay = Length / speed of signals = $L/\frac{2}{3}c = D$ seconds

Combining the two terms we have: Latency = M/R + D

7

Metric Units

• The main prefixes we use:

Prefix	Exp.	prefix	exp.
K(ilo)	10 ³	m(illi)	10 ⁻³
M(ega)	10 ⁶	μ(micro)	10 ⁻⁶
G(iga)	10 ⁹	n(ano)	10-9

- Use powers of 10 for rates, 2 for storage
 - 1 Mbps = 1,000,000 bps, 1 KB = 1024 bytes
- "B" is for bytes, "b" is for bits

Latency Examples

- "Dialup" with a telephone modem:
 - D = 5ms, R = 56 kbps, M = 1250 bytes
- Broadband cross-country link:
 - D = 50ms, R = 10 Mbps, M = 1250 bytes

9

Latency Examples (2)

"Dialup" with a telephone modem:

```
D = 5ms, R = 56 kbps, M = 1250 bytes
L = 5ms + (1250 \times 8)/(56 \times 10^3) sec = 184ms!
```

Broadband cross-country link:

```
D = 50ms, R = 10 Mbps, M = 1250 bytes
L = 50ms + (1250 \times 8) / (10 \times 10^6) sec = 51ms
```

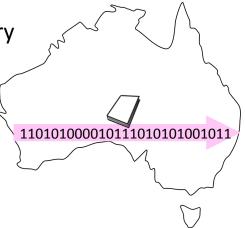
- A long link or a slow rate means high latency
 - Often, one delay component dominates

CSE 461 University of Washington

Bandwidth-Delay Product

Messages take space on the wire!

- The amount of data in flight is the bandwidth-delay (BD) product
 - Measure in bits, or in messages
 - Small for LANs, big for "long fat" pipes


11

Bandwidth-Delay Example

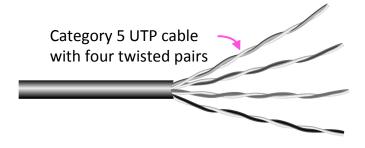
Fiber at home, cross-country
 R=40 Mbps, D=50ms

BD =
$$40 \times 50 \times 10^3$$
 bits
= 250 KB

 That's quite a lot of data "in the network"!

Introduction to Computer Networks

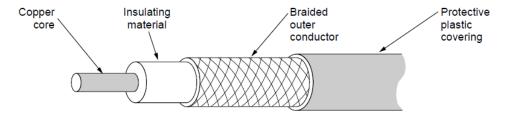
Media (Wires, etc.) (§2.2, 2.3)



Types of Media

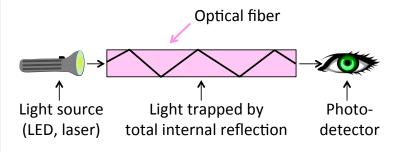
- Media propagate <u>signals</u> that carry <u>bits</u> of information
- We'll look at some common types:
 - Wires »
 - Fiber (fiber optic cables) »
 - Wireless »

Wires - Twisted Pair


- Very common; used in LANs and telephone lines
 - Twists reduce radiated signal

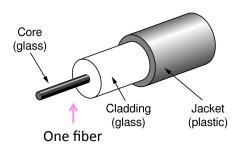
15

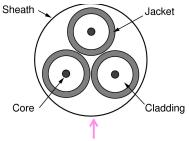
Wires - Coaxial Cable


Also common. Better shielding for better performance

Other kinds of wires too: e.g., electrical power

Fiber

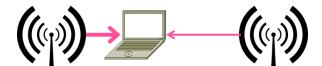

- · Long, thin, pure strands of glass
 - Enormous bandwidth over long distances

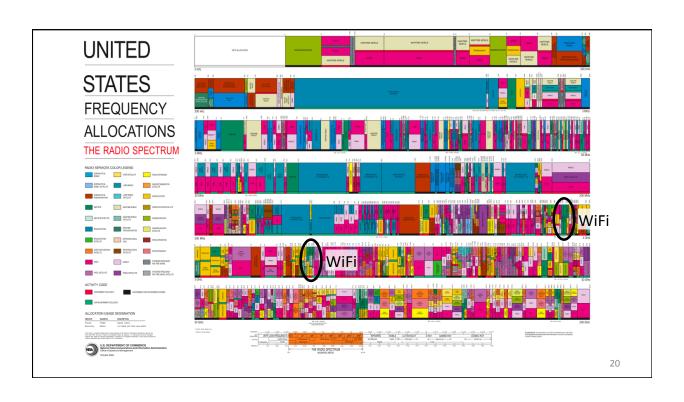


17

Fiber (2)

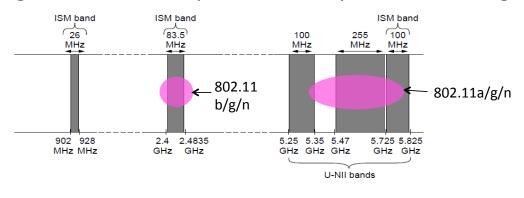
 Two varieties: multi-mode (shorter links, cheaper) and single-mode (up to ~100 km)





Fiber bundle in a cable

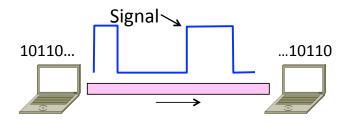
Wireless


- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u>
 at a receiver; need to coordinate use

Wireless (2)

 Microwave, e.g., 3G, and unlicensed (ISM) frequencies, e.g., WiFi, are widely used for computer networking

21


Introduction to Computer Networks

Signals (§2.2)

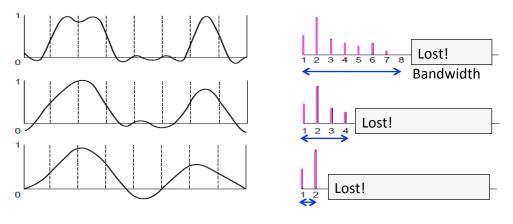
Topic

Analog signals encode digital bits.
 We want to know what happens as signals propagate over media

23

Frequency Representation

 A signal over time can be represented by its frequency components (called Fourier analysis)


$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

$$1 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 0$$
Signal over time \longrightarrow

$$T \qquad = \frac{1}{123456789101112131415}$$
weights of harmonic frequencies

Effect of Less Bandwidth

Less bandwidth degrades signal (less rapid transitions)

2

Signals over a Wire

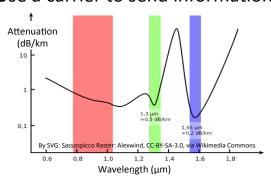
- What happens to a signal as it passes over a wire?
 - The signal is delayed (propagates at ¾c)
 - The signal is attenuated (goes for m to km)
 - Noise is added to the signal (later, causes errors)
 - Frequencies above a cutoff are highly attenuated

EE: Bandwidth = width of frequency band, measured in Hz CS: Bandwidth = information carrying capacity, in bits/sec

Signals over a Wire (2)

• Example:

1: Attenuation:

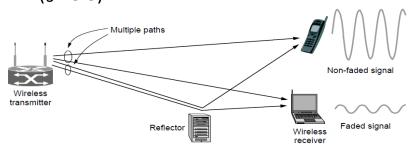

Sent signal → 2: Bandwidth:

3: Noise:

27

Signals over Fiber

- Light propagates with very low loss in three very wide frequency bands
 - Use a carrier to send information

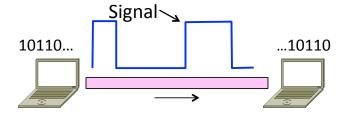

Signals over Wireless (§2.2)

- Signals transmitted on a carrier frequency
- Travel at speed of light, spread out and attenuate faster than 1/dist²
- Multiple signals on the same frequency interfere at a receiver
- Other effects are highly frequency dependent, e.g., multipath at microwave frequencies

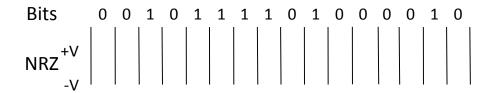
29

Wireless Multipath

- Signals bounce off objects and take multiple paths
 - Some frequencies attenuated at receiver, varies with location
 - Messes up signal; handled with sophisticated methods (§2.5.3)

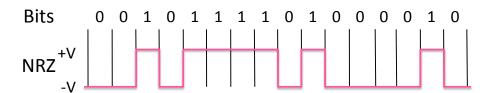

Introduction to Computer Networks

Modulation (§2.5)


Topic

- We've talked about signals representing bits. How, exactly?
 - This is the topic of modulation

A Simple Modulation


- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

33

A Simple Modulation (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Many Other Schemes

 Can use more signal levels, e.g., 4 levels is 2 bits per <u>symbol</u>

- Practical schemes are driven by engineering considerations
 - E.g., clock recovery »

35

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

```
1 0 0 0 0 0 0 0 0 0 ... 0
```

How do we address this problem?

Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits with a transition that are sent
 - $-0000 \rightarrow 11110,0001 \rightarrow 01001,$ $1110 \rightarrow 11100, ... 1111 \rightarrow 11101$
 - Has at most 3 zeros in a row

37

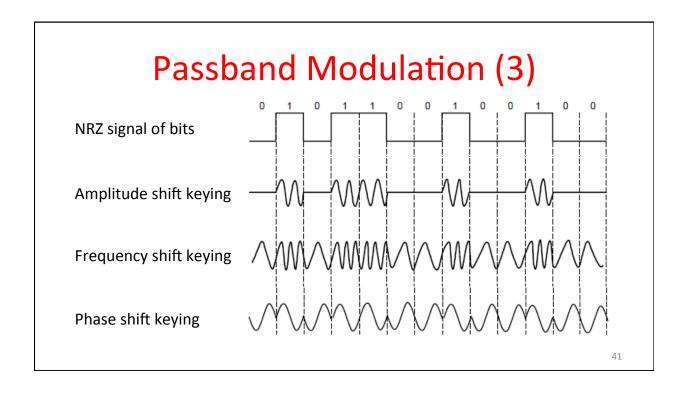
Clock Recovery – 4B/5B (2)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 0000 0001

Coded Bits:

Signal:

Passband Modulation


- What we have seen so far is baseband modulation for wires
 - Signal is sent directly on a wire
- These signals do not propagate well on fiber / wireless
 - Need to send at higher frequencies
- <u>Passband</u> modulation carries a signal by modulating a carrier

39

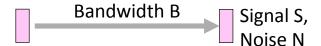
Passband Modulation (2)

 Carrier is simply a signal oscillating at a desired frequency:

- We can modulate it by changing:
 - Amplitude, frequency, or phase

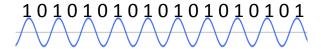
Introduction to Computer Networks

Fundamental Limits (§2.2)


Topic

- How rapidly can we send information over a link?
 - Nyquist limit (~1924) »
 - Shannon capacity (1948) »
- Practical systems are devised to approach these limits

43

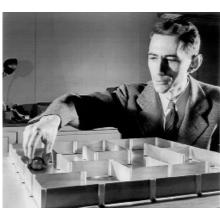

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise strength (N)
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Nyquist Limit

The maximum symbol rate is 2B

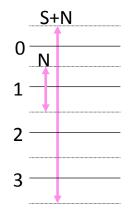
 Thus if there are V signal levels, ignoring noise, the maximum bit rate is:


 $R = 2B log_2 V bits/sec$

45

Claude Shannon (1916-2001)

- Father of information theory
 - "A Mathematical Theory of Communication", 1948
- Fundamental contributions to digital computers, security, and communications


Electromechanical mouse that "solves" mazes!

Credit: Courtesy MIT Museum

Shannon Limit

- How many levels we can distinguish depends on S/N
 - Or SNR, the Signal-to-Noise Ratio
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:
 - $-SNR_{dB} = 10log_{10}(S/N)$

47

Shannon Limit (2)

 Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

$$C = B \log_2(1 + S/N)$$
 bits/sec

Wired/Wireless Perspective

- Wires, and Fiber Engineer SNR for data rate
 - Engineer link to have requisite SNR and B
 - →Can fix data rate
- Wireless

Adapt data rate to SNR

- Given B, but SNR varies greatly, e.g., up to 60 dB!
- →Can't design for worst case, must adapt data rate