Introduction to Computer Networks

Network Security Introduction

Topic

- Network security designs to protect against a variety of threats
 - Often build on cryptography
 - Just a brief overview. Take a course!

Security Threats

- "Security" is like "performance"
 - Means many things to many people
 - Must define the properties we want
- Key part of network security is clearly stating the <u>threat model</u>
 - The dangers and attacker's abilities
 - Can't assess risk otherwise

Computer Networks

3

Security Threats (2)

- Some example threats
 - It's not all about encrypting messages

Attacker	Ability	Threat
Eavesdropper	Intercept messages	Read contents of message
Intruder	Compromised host	Tamper with contents of message
Impersonator	Social engineering	Trick party into giving information
Extortionist	Remote / botnet	Disrupt network services

Computer Networks

Risk Management

- Security is hard as a negative goal
 - Try to ensure security properties and don't let anything bad happen!
- Only as secure as the weakest link
 - Could be design flaw or bug in code
 - But often the weak link is elsewhere...

Computer Networks

5

Risk Management (2)

- 802.11 security ... early on, WEP:
 - Cryptography was flawed; can run cracking software to read WiFi traffic
- Today, WPA2/802.11i security:
 - Computationally infeasible to break!
- So that means 802.11 is secure against eavesdropping?

Computer Networks

Risk Management (3)

- Many possible threats
 - We just made the first one harder!
 - 802.11 is more secure against eavesdropping in that the risk of successful attack is lower. But it is not "secure".

Threat Model	Old WiFi (WEP)	New WiFi (WPA2)
Break encryption from outside	Very easy	Very difficult
Guess WiFi password	Often possible	Often possible
Get password from computer	May be possible	May be possible
Physically break into home	Difficult	Difficult

Computer Networks 7

Topics Threat models time Confidentiality Crypto Authentication Wireless security (802.11) Web security (HTTPS/SSL) **Applied** crypto **DNS** security Virtual Private Networks (VPNs) **Firewalls** Distributed denial-of-service Connectivity **Computer Networks**

Goal and Threat Model

- Goal is to send a private message from Alice to Bob
 - This is called confidentiality
- Threat is Eve will read the message
 - Eve is a passive adversary (observes)

Computer Networks

9

Encryption/Decryption Model

- Alice encrypts private message (plaintext) using key
- Eve sees <u>ciphertext</u> but can't relate it to private message
- Bob decrypts using key to obtain the private message

Encryption/Decryption (2)

- Encryption is a reversible mapping
 - Ciphertext is confused plaintext
- Assume attacker knows algorithm
 - Security does not rely on its secrecy
- Algorithm is parameterized by keys
 - Security does rely on key secrecy
 - Must be distributed (Achilles' heel)

Computer Networks 11

Encryption/Decryption (3)

Two main kinds of encryption:

- Symmetric key encryption », e.g., AES
 - Alice and Bob share secret key
 - Encryption is a bit mangling box
- Public key encryption », e.g., RSA
 - Alice and Bob each have a key in two parts: a public part (widely known), and a private part (only owner knows)
 - Encryption is based on mathematics (e.g., RSA is based on difficulty of factoring)

Symmetric (Secret Key) Encryption

- Alice and Bob have the same secret key, KAR
 - Anyone with the secret key can encrypt/decrypt

Computer Networks 13

Public Key (Asymmetric) Encryption

- Alice and Bob each have public/private key pair (K_B/K_B^{-1})
 - Public keys are well-known, private keys are secret to owner

Computer Networks

Public Key Encryption (2)

- Alice encrypts with Bob's public key K_B; anyone can send
- Bob decrypts with his private key κ_B-1; only he can do so

Computer Networks

Key Distribution

15

- This is a big problem on a network!
 - Often want to talk to new parties
- Symmetric encryption problematic
 - Have to first set up shared secret
- Public key idea has own difficulties
 - Need trusted directory service
 - We'll look at certificates later

Symmetric vs. Public Key

- Have complementary properties
 - Want the best of both!

Property	Symmetric	Public Key
Key Distribution	Hard– share secret per pair of users	Easier– publish public key per user
Runtime Performance	Fast– good for high data rate	Slow– few, small, messages

Computer Networks 17

Winning Combination

- Alice uses public key encryption to send Bob a small private message
 - It's a key! (Say 256 bits.)
- Alice and Bob send large messages with symmetric encryption
 - Using the key they now share
- The key is called a <u>session key</u>
 - Generated for short-term use

Introduction to Computer Networks

Message Authentication (§8.2-8.3, §8.4.2-8.4.3)

Goal and Threat Model

- Goal is to let Bob verify the message came from Alice and is unchanged
 - This is called integrity/authenticity
- Threat is Trudy will tamper with messages
 - Trudy is an active adversary (interferes)

Computer Networks

Encryption Issues

- What will happen if Trudy flips some of Alice's message bits?
 - Bob will receive an altered message

Computer Networks

21

Encryption Issues

- What if Trudy reorders message?
 - Bob will receive altered message

- Should have been (Woops)
 - "STOP DO NOT BUY NOW"

Message Digest or Cryptographic Hash

- Digest/Hash is a secure checksum
 - Deterministically mangles bits to pseudo-random output (like CRC)
 - Can't find messages with same hash
 - Acts as a fixed-length descriptor of message – very useful!

Computer Networks 23

MAC (Message Authentication Code)

- MAC is a small token to validate the integrity/authenticity of a message
 - Send the MAC along with message
 - Validate MAC, process the message
 - Example: HMAC scheme

25

MAC (2)

- Kind of symmetric encryption operation key is shared
 - Lets Bob validate unaltered message came from Alice
 - Doesn't let Bob convince Charlie that Alice sent the message

Computer Networks

Digital Signature

- Signature validates the integrity/ authenticity of a message
 - Send it along with the message
 - Lets all parties validate
 - Example: RSA signatures

Digital Signature (2)

- Kind of public key operation public/private key parts
 - Alice signs with private key, K_A^{-1} , Bob verifies with public key, K_A
 - Does let Bob convince Charlie that Alice sent the message

Preventing Replays

- We normally want more than confidentiality, integrity, and authenticity for secure messages!
 - Want to be sure message is fresh
- Don't want to mistake old message for a new one – a <u>replay</u>
 - Acting on it again may cause trouble

Preventing Replays (2)

- Replay attack:
 - Trudy records Alice's messages to Bob
 - Trudy later replays them (unread) to Bob; she pretends to be Alice

Computer Networks 29

Preventing Replays (3)

- To prevent replays, include proof of freshness in messages
 - Use a timestamp, or nonce

Takeaway

- Cryptographic designs can give us integrity, authenticity and freshness as well as confidentiality.
- Real protocol designs combine the properties in different ways
 - We'll see some examples
 - Note many pitfalls in how to combine, as well as in the primitives themselves

Computer Networks 31

Introduction to Computer Networks

Wireless Security (§8.6.4)

Goal and Threat Model

- Unlike wired, wireless messages are broadcast to all nearby receivers
 - Don't need physical network access
 - Heightens security problems

Computer Networks

33

Goal and Threat Model (2)

- Two main threats:
 - 1. Eavesdropping on conversations
 - 2. Unauthorized access to network
- We'll consider 802.11 setting
 - Assume external attacker can send/ receive wireless messages

Computer Networks

802.11 Security

- Provides access control, and message confidentiality, integrity/authenticity
 - Keying based on passwords
- 802.11 standard (1999) used WEP
 - For "Wired Equivalent Privacy"
 - Badly flawed, easily broken
- 802.11i standard in 2004
 - WiFi Protected Access or WPA2
 - This is what you should use

Computer Networks 35

802.11 Security (2)

- Security is part of 802.11 protocol
 - Encrypted message between client and AP; removed after AP

Home Network

- AP is set up with network password
- Each client also knows password
- Client proves it knows password »
 - AP grants network access if successful

Computer Networks 37

Home Network (2)

- For access, client authenticates to AP »
 - Both compute a shared session key based on the password
 - If client knows the session key it has proved that is has the password
- For usage, client/AP encrypt messages
 - For confidentiality, integrity/authenticity
 - No access without the session key
 - Also group key for AP to reach all clients

Computer Networks 38

Home Network (3)

- Master key is from password; nonces for freshness
 - Ks lets client talk to AP; Kg lets AP talk to all clients

Enterprise Network

- Network has authentication server
- Each client has own credentials
- AP lets client talk to auth. server
 - Grants network access if successful

Introduction to Computer Networks

Web Security (§8.9.3, §8.5)

Goal and Threat Model

- Much can go wrong on the web!
 - Clients encounter malicious content
 - Web servers are target of break-ins
 - Fake content/servers trick users
 - Data sent over network is stolen ...

Goal and Threat Model (2)

- Goal of HTTPS is to secure HTTP
- We focus on network threats:
 - 1. Eavesdropping client/server traffic
 - 2. Tampering with client/server traffic
 - 3. Impersonating web servers

Computer Networks

HTTPS Context

- HTTPS (HTTP Secure) is an add-on
 - Means HTTP over SSL/TLS
 - SSL (Secure Sockets Layer) precedes
 TLS (Transport Layer Security)

Computer Networks 44

HTTPS Context (2)

- SSL came out of Netscape
 - SSL2 (flawed) made public in '95
 - SSL3 fixed flaws in '96
- TLS is the open standard
 - TLS 1.0 in '99, 1.1 in '06, 1.2 in '08
- Motivated by secure web commerce
 - Slow adoption, now widespread use
 - Can be used by any app, not just HTTP

Computer Networks 45

SSL Operation

- Protocol provides:
 - Verification of identity of server (and optionally client)
 - Message exchange between the two with confidentiality, integrity, authenticity and freshness
- Consists of authentication phase (that sets up encryption) followed by data transfer phase

Computer Networks 46

SSL/TLS Authentication

- Must allow clients to securely connect to servers not used before
 - Client must authenticate server

- Server typically doesn't identify client
- Uses public key authentication
 - But how does client get server's key?
 - With certificates »

Computer Networks

Certificates

- A certificate binds public key to an identity, e.g., domain
 - Distributes public keys when signed by a party you trust
 - Commonly in a format called X.509

PKI (Public Key Infrastructure)

- Adds hierarchy to certificates to let many parties issue
 - Issuing parties are called CAs (Certificate Authorities)

PKI (2)

 Need public key of PKI root and trust in servers on path to verify a public key of website ABC

- Browser has Root's public key
- {RA1's key is X} signed Root
- {CA1's key is Y} signed RA1
- {ABC's key Z} signed CA1

Computer Networks

50

PKI (4)

- Real-world complication:
 - Public keys may be compromised
 - Certificates must then be revoked
- PKI includes a CRL (Certificate Revocation List)
 - Browsers use to weed out bad keys

Introduction to Computer Networks

DNS Security (§8.9.2)

Goal and Threat Model

- Naming is a crucial Internet service
 - Binds host name to IP address
 - Wrong binding can be disastrous ...

Computer Networks

Goal and Threat Model (2)

- Goal is to secure the DNS so that the returned binding is correct
 - Integrity/authenticity vs confidentiality
- Attacker can intercept/tamper with messages on the network

Computer Networks

56

DNS Attacks

How can a network attacker corrupt the DNS?

Computer Networks

57

DNS Spoofing (2)

- To spoof, Trudy returns a fake DNS response that appears to be true
 - Fake response contains bad binding

Computer Networks

DNS Spoofing (3)

- Lots of questions!
 - 1. How does Trudy know when the DNS query is sent and what it is for?
 - 2. How can Trudy supply a fake DNS reply that appears to be real?
 - 3. What happens when the real DNS reply shows up?
- There are solutions to each issue ...

Computer Networks

59

DNS Spoofing (4)

- 1. How does Trudy know when the query is sent and what it is for?
- Trudy can make the query herself!
 - Nameserver works for many clients
 - Trudy is just another client

Computer Networks

DNS Spoofing (5)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- A bit more difficult. DNS checks:
 - Reply is from authoritative nameserver (e.g., .com)
 - Reply ID that matches the request
 - Reply is for outstanding query
- (Nothing about content though ...)

Computer Networks 61

DNS Spoofing (6)

- 2. How can Trudy supply a fake DNS reply that appears to be real?
- Techniques:
 - Put IP of authoritative nameserver as the source IP address
 - ID is 16 bits (64K). Send many guesses!
 (Or if a counter, sample to predict.)
 - Send reply right after query
- Good chance of succeeding!

DNS Spoofing (7)

- 3. What happens when the real DNS reply shows up?
- Likely not be a problem
 - There is no outstanding query after fake reply is accepted
 - So real reply will be discarded

Computer Networks

DNSSEC (DNS Security Extensions)

- Extends DNS with new record types
 - RRSIG for digital signatures of records
 - DNSKEY for public keys for validation
 - DS for public keys for delegation
 - First version in '97, revised by '05
- Deployment requires software upgrade at both client and server
 - Root servers upgraded in 2010
 - Followed by uptick in deployment

DNSSEC (2) – New Records

- As well as the usual A, NS records:
- RRSIG
 - Digital signatures of domain records
- DNSKEY
 - Public key used for domain RRSIGs
- DS
 - Public keys for delegated domain
- NSEC/NSEC3
 - Authenticated denial of existence

Computer Networks 6

DNSSEC (3) – Validating Replies

- Clients query DNS as usual, then validate replies to check that content is authentic
- Trust anchor is root public keys
 - Part of DNS client configuration
- Trust proceeds down DNS hierarchy
 - Similar concept to SSL certificates

DNSSEC (4) – Validating Replies

Client queries www.uw.edu as usual

Replies include signatures/keys

Client validates answer:

- KROOT is a trust anchor
- 2. Use Kroot to check Kedu
- 3. Use Kedu to check Kuw.edu
- 4. Use Kuw.EDU to check IP

Computer Networks

67

Goal and Threat Model

- Goal is for host to keep network connectivity for desired services
 - Threat is Trudy may overwhelm host with undesired traffic

Computer Networks

Internet Reality

- Distributed Denial-of-Service is a huge problem today!
 - Akamai Q3-12 reports DDOS against
 US banks peaking at 65 Gbps ...
- There are no great solutions
 - CDNs, network traffic filtering, and best practices all help

Computer Networks 69

Host Denial-of-Service

- Strange packets can sap host resources!
 - "Ping of Death" malformed packet
 - "SYN flood" sends many TCP connect requests and never follows up
 - Few bad packets can overwhelm host

- Patches exist for these vulnerabilities
 - Read about "SYN cookies" for interest

Network Denial-of-Service

- Network DOS needs many packets
 - To saturate network links
 - Causes high congestion/loss

 Helpful to have many attackers ... or <u>Distributed Denial-of-Service</u>

Computer Networks 71

Distributed Denial-of-Service (DDOS)

- <u>Botnet</u> provides many attackers in the form of compromised hosts
 - Hosts send traffic flood to victim
 - Network saturates near victim

Complication: Spoofing

- Attackers can falsify their IP address
 - Put fake source address on packets
 - Historically network doesn't check
 - Hides location of the attackers

Computer Networks

73

Spoofing (2)

- Actually, it's worse than that
 - Trudy can trick Bob into really sending packets to Alice
 - To do so, Trudy spoofs Alice to Bob

Computer Networks

Best Practice: Ingress Filtering

- Idea: Validate the IP source address of packets at ISP boundary (Duh!)
 - Ingress filtering is a best practice, but deployment has been slow

Computer Networks 75

Flooding Defenses

- 1. Increase network capacity around the server; harder to cause loss
 - Use a CDN for high peak capacity
- 2. Filter out attack traffic within the network (at routers)
 - The earlier the filtering, the better
 - Ultimately what is needed, but ad hoc measures by ISPs today

Sketch of the capability approach

- 1. Source requests permission to send.
- 2. Destination authorizes source for limited transfer, e.g, 32KB in 10s
 - A capability is the proof of a destination's authorization.
- 3. Source places capabilities on packets and sends them.
- 4. Network filters packets based on capabilities.

77

Capabilities alone do not effectively limit DoS

Goal: minimize the damage of the arbitrary behavior of k attacking hosts.

Problems

- 1. Request or authorized packet floods
- 2. Added functionality in a router's forwarding path
- 3. Authorization policies
- 4. Deployment

Request packet floods

Request packets do not carry capabilities.

70

Counter request packet floods (I)

Rate-limit request packets

Counter request packet floods (II)

- Rate-limit request packets
- Routers insert path identifier tags
- Fair queue requests using the most recent tags

81

Authorized packet floods

Counter authorized packet floods

- Per-destination queues
- TVA bounds the number of queues.

83

TVA's implementation of capabilities

- Routers stamp pre-capabilities on request packets
 - (timestamp, hash(src, dst, key, timestamp)
- Destinations return fine-grained capabilities
 - (N, T, timestamp, hash(pre-cap, N, T))
 - send N bytes in the next T seconds, e.g. 32KB in 10 seconds

Validating fine-grained capabilities

- 1. A router verifies that the hash value is correct.
- 2. Checks for expiration: *timestamp + T · now*
- Checks for byte bound: sent + pkt_len · N

85

Bounded state

sent + pkt_len · N

- Create a slot if a capability sends faster than N/T.
- For a link with a fixed capacity C, there are at most C/(N/T) flows
- Number of slots is bounded by C / (N/T)

TVA Summary

- Key contribution
 - a comprehensive and practical capability system for the first time.
- TVA is practical in three aspects
 - Counter a broad range of attacks
 - Bounded state and computation
 - Simple and effective authorization policies
- But requires comprehensive changes to the Internet