
1

P561: Network Systems
Week 9: Network Security

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Administrivia

Fishnet Assignment #4
−  Due next Monday, Dec 1

Final Exam
−  Handed out next Monday night (and by email)
−  Due Monday, 12/8, 11:59pm, no extensions

No extensions allowed for fishnet assignments/
homework, even for reduced credit, beyond 12/5

2

Security in Practice

Attackers have the advantage
−  Get to think outside the box
−  Can exploit any unanticipated weakness
−  Obscurity hard to maintain

Defense
−  Needs to anticipate all feasible attack vectors
−  Hard to prove that no attack is possible

•  Even at the crypto level

−  Hard to detect if an attack has been successful
−  Hard to re-secure a system after an attack

3

Fundamental Tenet: If lots of smart people have
failed to break a system then it probably won’t
be broken

4

To Publish or Not to Publish

If the good guys break your system, you’ll hear
about it

If you publish your system, the white hats provide
free consulting by trying to crack it

The black hats will learn about your system
anyway

Today, most (but not all) commercial systems are
published; most military systems are not

To Publish or Not to Publish
(Part 2)

If you discover a workable attack, what is your
responsibility?

Gap between discovery of vulnerability, and
exploiting the vulnerability can be seconds

If you publish your system, the white hats provide
free consulting by trying to crack it

The black hats will learn about your system
anyway

Today, most (but not all) commercial systems are
published; most military systems are not

2

Some Old Examples
Western Digital

−  Compromise went undetected for months
Thompson self-propagating back door login

−  Reinstalls itself in every new version of UNIX
Tiger team attempt on Pentagon computer

−  No physical access
Secure communications channel: one time pad

−  paper tape of random #’s
−  same tape used at sender, receiver
−  system XORs to each bit before xmit/receive

Some Recent Examples

House Keys
ATM keypad
Pacemakers
Mifare transit smart cards
Washington State Driver’s Licenses (EPC RFID)
Electronic car keys
Elevator controls
Voting machines
WEP

8

802.11 WEP Weaknesses

Firewall often only at the perimeter
−  anyone can listen, send packets on intranet

Weak encryption method
−  uses 40 bit key, 32 bit initial #
−  most implementations use same initial #, allowing

dictionary, replay attacks
Key management overhead/config

−  single key used for all senders on a LAN; often disabled
Uses parity instead of CRC for integrity

−  allows block replacements that maintain parity

Network Security
Networks are shared

−  each packet traverses many devices on path from
source to receiver

Attacker might be in control of any of these devices
−  Or other machines on the network
−  Or administrative machines
−  Or, …

Network Security
How do you know messages aren’t:

−  Copied
−  Injected
−  Replaced/modified
−  Spoofed
−  Inferred
−  Prevented from being delivered
−  …

11

Network Security Goals

Despite the presence of malicious parties:

Privacy: messages can’t be eavesdropped/inferred
Authentication: messages were sent by the right

party
Integrity: messages can’t be tampered with
Denial of Service: messages are delivered

3

Encryption

Cryptographer chooses E, D and keys KE, KD
−  Suppose everything is known (E, D, M and C), should

not be able to determine keys KE, KD and/or modify C
without detection

−  provides basis for authentication, privacy and integrity

Sender

Plaintext (M)

Encrypt

E(M,KE)

Ciphertext (C)

Receiver

Plaintext (M)

Decrypt

D(C, KD)

How Secure is Encryption?

An attacker who knows the algorithm we’re
using could try all possible keys

Security of cryptography depends on the limited
computational power of the attacker

A fairly small key (e.g. 128 bits) represents a
formidable challenge to the attacker

Algorithms can also have weaknesses,
independent of key size

How Practical is Encryption

Usability depends on being efficient for the
good guys

Cost to the good guys tends to rise linearly with
key length

Cost to search all keys rises exponentially with
key length

How do we keep keys secret?
−  Short keys: easy to remember, easy to break

How Secure are Passwords?
UNIX passwords: time to check all 5 letter

passwords (lower case): 26^5 ~ 10M
−  in 75, 1 day
−  in 92, 10 seconds
−  In 08, 0.001 seconds

Extend password to six letters, require upper,
lower, number, control char: 70^6 ~ 600B
−  in 92, 6 days
−  in 08, with 1000 PC’s in parallel, < 1 second (!)

Password Attack/Response
Moore’s Law: enables large number of passwords to be

checked very quickly
Countermeasure

−  Delay password check for 1 second, so can’t try them quickly
−  Need to delay both successful and unsuccessful password checks!

Counter-countermeasure:
−  Observe network traffic; extract any packet encrypted in

password; check various passwords offline

Counter-counter-countermeasure:
−  Kerberos: don’t use password to encrypt packets; instead use

password to encrypt file containing shared key; use shared key to
encrypt packets

Counter-counter-counter-countermeasure: …

Cryptography

Secret Key Cryptography (DES, IDEA, RCx, AES)
Public Key Cryptography (RSA, Diffie-Hellman,

DSS)
Message Digests (MD4, MD5, SHA-1)

4

Secret Key

Single key (symmetric) is shared between parties,
kept secret from everyone else
−  Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
−  if K kept secret, then both parties know M is authentic

and secret

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Secret Key Integrity: Message
Authentication Codes

Generate

MAC

Verify

MAC
MAC

Plaintext

Yes/No

Key Key

Challenge / Response
Authentication

Alice (knows K) Bob (knows K)

I’m Alice Pick Random R

Encrypt R using K

If you’re Alice, decrypt (R)^K

(R+1)^K

Bob thinks Alice is fresh

Secret Key Algorithms

DES (Data Encryption Standard)
−  56 bit key (+ 8 parity bits) => has become too small
−  Input and output are 64 bit blocks
−  slow in software, based on (gratuitous?) bit twiddling

IDEA (International Data Encryption Algorithm)
−  128 bit key
−  Input and output are 64 bit blocks
−  designed to be efficient in software

Secret Key Algorithms

Triple DES
−  Apply DES three times (EDE) using K1, K2, K3

where K1 may equal K3
−  Input and output 64 bit blocks
−  Key is 112 or 168 bits

Advanced Encryption Standard (AES)
−  New NIST standard to replace DES.
−  Public Design and Selection Process. Rijndael.
−  Key Sizes 128,192,256. Block size 128.

Secret Key Algorithms

RC2 (Rivest’s Cipher #2)
−  Variable key size
−  Input and output are 64 bit blocks

RC4 (Rivest’s Cipher #4)
−  Variable key size
−  Extremely efficient
−  Stream cipher - one time use keys

Many other secret key algorithms exist
It is hard to invent secure ones!
No good reason to invent new ones

5

Encrypting Large Messages

The basic algorithms encrypt a fixed size block
Obvious solution is to encrypt a block at a time. This

is called Electronic Code Book (ECB)
−  Leaks data: repeated plaintext blocks yield repeated

ciphertext blocks
−  Does not guarantee integrity!

Other modes “chain” to avoid this (CBC, CFB, OFB)

CBC (Cipher Block Chaining)

IV M1 M2 M3 M4

IV C1 C2 C3 C4

E E E E

CBC Decryption

IV C1 C2 C3 C4

IV M1 M2 M3 M4

D D D D

XOR (Exclusive-OR)

Bitwise operation with two inputs where the
output bit is 1 if exactly one of the two input
bits is one

(B XOR A) XOR A) = B
If A is a “one time pad”, very efficient and secure
Common encryption schemes (e.g. RC4) calculate

a pseudo-random stream from a key

Public Key Encryption

Keys come in pairs, public and private
−  Each entity (user, host, router,…) gets its own pair
−  Public key can be published; private is secret to entity

•  can’t derive K-private from K-public, even given M, (M)^K-priv
−  If encrypt with receiver’s public key, ensures can only be read by

receiver

Plaintext

Encrypt with
public key

Secret Ciphertext

Plaintext

Decrypt with
private key

Public Key Integrity Protection

Generate

Signature

Verify

Signature
Signature

Plaintext

Yes/No

Private Key

(of sender)

Public Key

6

Zero Knowledge Authentication

Where to keep your private key?
−  keys that are easy to remember, are easier to break
−  keys that aren’t easy to break, can’t be remembered!
−  If stored online, can be captured

Instead, store private key inside a chip
−  use challenge-response to authenticate user

a

challenge: x

response:

(x+1)^K-private

dongle

Public Key -> Session Key
Public key encryption/decryption is slow; so can use public

key to establish (shared) session key
−  If both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client server client ID, x

(y+1)^K

client

authenticates

server server

authenticates

client

Public Key Distribution

How do we know public key of other side?
−  infeasible for every host to know everyone’s key
−  need public key infrastructure (PKI)

Certificates (X.509)
−  Distribute keys by trusted certificate authority (CA)

•  “I swear X’s public key is Y”, signed by CA (their private key)

−  Example CA’s: Verisign, Microsoft, UW CS Dept., …
−  But! Doesn’t mean entity is trustworthy!

How do we know public key of CA?
−  Typically, hard-coded into browsers
−  Alternative: build chain of trust, e.g., from UW’s CA

to list of CA’s that UW trusts

Public Key Revocation
What if a private key is compromised?

−  Hope it never happens?

Need certificate revocation list (CRL)
−  and a CRL authority for serving the list
−  everyone using a certificate is responsible for checking

to see if it is on CRL
−  ex: certificate can have two timestamps

•  one long term, when certificate times out
•  one short term, when CRL must be checked
•  CRL is online, CA can be offline

Secret Key -> Session Key
In secret key systems, how do we get a secret with

other side?
−  infeasible for everyone to share a secret with everyone

else
Solution: “authentication server” (Kerberos)

−  everyone shares (a separate) secret with server
−  server provides session key for A <-> B
−  everyone trusts authentication server

•  if compromise server, can do anything!

Kerberos

Developed at MIT
Based on secret key cryptography
Code is publicly available (for a long time not

legally exportable from the U.S.)
Early version used block cipher

−  Vulnerability caught and fixed

Embedded in a variety of commercial products
−  Ex: in use by UW CSE

7

Kerberos Authentication (Basic)

Alice KDC Bob

Alice wants Bob

{“Bob”, Kab, {“Alice”,Kab}^Kb}^Ka

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Ticket Granting Tickets

It is dangerous for the workstation to hold
Alice’s secret for her entire login session

Instead, Alice uses her password to get a short
lived “ticket” to the “Ticket Granting Service”
which can be used to get tickets for a limited
time

For a login session >8 hours, she must enter her
password again

Ticket Granting Tickets

TGT looks just like ticket but encrypted with
KDC’s key

WS keeps TGT = {“Alice”,S}Kkdc and S

Kerberos Authentication
(with TGT={“Alice”,S}Kkdc)

Alice KDC Bob

Alice wants Bob, TGT

{“Bob”, Kab, {“Alice”,Kab}^Kb}^ S

{“Alice”, Kab}^Kb, {timestamp}^Kab

{timestamp+1}^Kab

Pre-authentication

Anyone can request a ticket on behalf of Alice,
and the response will be encrypted under her
password

This allows an off-line password guessing attack
Kerberos V5 requires an encrypted timestamp

on the request
−  Only an eavesdropper can guess passwords

Kerberos Weaknesses

Early versions of Kerberos had several security
flaws
−  block cipher: allows encrypted blocks to be replaced

•  solution: add encrypted CRC over entire message

−  uses timestamps to verify communication was recent
•  time server communication not encrypted (!)
•  get time from authentication server

−  Kerberos login program downloaded over NFS
•  NFS authenticates requests, but data is unencrypted
•  disallow diskless operation?

8

Message Digests (MD5, SHA)

Cryptographic checksum: message integrity
−  Typically small compared to message (MD5 128 bits)
−  “One-way”: infeasible to find two messages with same

digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Example Systems

Cryptography can be applied at multiple layers
Pretty Good Privacy (PGP)

−  For authentic and confidential email

Secure Sockets (SSL) and Secure HTTP (HTTPS)
−  For secure Web transactions

IP Security (IPSEC)
−  Framework for encrypting/authenticating IP packets

PGP
Application level system
Based on public keys and a “grass roots” Web of

trust
Sign messages for integrity/authenticity

−  Encrypt with private key of sender
Encrypt messages for privacy

−  Could just use public key of receiver …
−  But encrypt message with secret key, and secret key

with public key of receiver to boost performance

TCP Hijacking

Example: Mitnick
−  Denial of service attack against system administrator

•  open large number of TCP connections
−  Followed by attack on user machines

Scan for open, idle TCP connections (e.g., rlogin,
xwindows)

Send spoofed TCP packets to other end, e.g., to
modify .rhosts to allow future access
−  Requires ability to predict TCP sequence #

Fixed with SSL

SSL/TLS and HTTPS

Secure transport layer targeted at Web transactions
−  SSL/TLS inserted between TCP and HTTP to make secure HTTP

Extra handshake phase to authenticate and exchange shared
session keys
−  Client might authenticate Web server but not vice-versa

•  Certificate Authority embedded in Web browser

Performance optimization
−  Refer to shared state with session id
−  Can use same parameters across connections

•  Client sends session id, allowing server to skip handshake

SSL/TLS

Client Server Initiate Request

Server Certificate Chain

{Session key}Server’s public key

{Data}Session key

9

IPSEC

Framework for encrypted IP packets
−  Choice of algorithms not specified

Uses new protocol headers inside IPv4 packets
−  Authentication header

•  For message integrity and origin authenticity
•  Optionally “anti-replay” protection (via sequence number)

−  Encapsulating Security Payload
•  Adds encryption for privacy

Depends on key distribution (ISAKAMP)
−  Sets up security associations

Ex: secure tunnels between corporate offices

Filter-based Firewalls

Sit between site and rest of Internet, filter packets
−  Enforce site policy in a manageable way
−  e.g. pass (*,*, 128.7.6.5, 80), then drop (*, *, *, 80)
−  Rules may be added dynamically to allow new

connections
Sometimes bundled with a router: “level 4” switch

−  Acts like a router (accepts and forwards packets)
−  Looks at information up to TCP port numbers (layer 4)

Rest of the Internet Local site Firewall

Proxy-Based Firewalls

Problem: Filter ruleset can be complex/insufficient
−  Adequate filtering may require application knowledge
−  Example: email virus signature

Run proxies for Web, mail, etc. just outside firewall
−  External requests go to proxies, only proxies connect

inside
•  External user may or may not know this is happening

−  Proxies filter based on application semantics

Company net Firewall W eb
server

Random
external
user

Remote
company
user

Internet Proxy

DMZ

Trojan Horse

Can you trust your login prompt?
−  did the sysadmin install the software correctly? how

do you know?
Can you trust your web browser?

−  what if someone modified the installed version to
capture your password?

−  did you download the browser over the web? how do
you know it didn’t get modified in flight?

−  20 minutes from BitTyrant release => virus at mirror
Can you trust your email?

−  how do you know the sender sent the mail? that it
wasn’t modified?

Phishing

Modern day trojan horse
Web page or email that appears to be from bank/

commercial entity
−  Attacker inserts spoofed forms, links, executables
−  Gathers login information, installs spyware, etc.

How do you protect yourself against phishing?
−  Web pages at common misspellings (or unicode)
−  Google ad listings
−  Email alert from bank

Never trust anything on the web?

53

Ping of Death

IP packets can be fragmented, reordered in flight
Reassembly at host

−  can get fragments out of order, so host allocates
buffer to hold fragments

Malformed IP fragment possible
−  offset + length > max packet size
−  Kernel implementation didn’t check

Was used for denial of service, but could have
been used for virus propagation

10

Morris Worm
Used the Internet to infect a large number of

machines in 88
−  password dictionary
−  sendmail bug

•  default configuration allowed debug access
•  well known for several years, but not fixed

−  fingerd: finger tom@cs
•  fingerd allocated fixed size buffer on stack
•  copied string into buffer without checking length
•  encode virus into string!

Used infected machines to find/infect others

More Worms

Often use a dictionary of known vulnerabilities
−  email attachments, Microsoft web server bugs,

browser helper applications, …
−  use infected machines to infect new machines
−  Collateral damage: router DoS due to reverse ARP

Code Red (2000)
−  designed to cause all infected machines to access

whitehouse.gov at a defined date
−  Brought down a large number of routers
−  Short term fix: assign whitehouse a new IP address
−  Still a substantial # of infected Code Red machines!

More Worms
Nimda: Code Red, but better engineered (2001)

−  Left open backdoor on infected machines for any use
−  Can monitor virus propagation to located infected

machines
−  Infected ~ 400K machines; approx ~30K still infected

SQL Slammer (2003)
−  Exploited buffer overflow in SQL server
−  Vulnerability had been identified, fixed and publicized

six months earlier!
−  Entire worm fit in one packet => rapid propagation

What are limits on virus propagation?
−  Is automated response/quarantine even possible?

57

DNS Cache Poisoning
If attacker can know when DNS cache fetches a

new translation
−  spoof reply to poison cache to point to bogus server
−  With a large TTL so it never refetches

Solution: DNS-SEC
−  Digitally signed DNS records
−  Need chain of signatures from root to leaf
−  Not widely deployed

58

BGP Hijacking
BGP prefix origin announcements are not signed

−  Easy to announce a new prefix
−  Packets diverted to new origin (if closer to the source)
−  Often done by mistake (1/2 of all new announcements

done by mistake!)
−  Ex: Cisco’s prefix hijacked repeatedly
−  Pakistan ISP hijacked YouTube intentionally

Solution: Secure BGP and variants
−  Digitally signed BGP records
−  Need chain of records from destination to source
−  Not widely deployed

59

Denial of Service

Prevent access to a service by intended users
−  Ex: Georgia
−  Ex: extortion
−  Ex: Root DNS servers

Any fixed resource can be overwhelmed
−  Memory in the server (e.g., Mitnick)

•  Solution: SYN cookies, per-prefix connection limits

−  CPU in the server
•  Solution: resource containers inside OS kernel

−  DNS processing/bandwidth
•  Replication/longer TTLs

60

11

Denial of Service v2.0

What if DoS attack looks like a flash flood?
−  Recruit large botnet (cf. viruses, worms)

•  1M broadband nodes => 1Tb/s of traffic

−  Activity could appear completely normal!
−  Congestion can occur well upstream of destination

Solution: destination controls delivery
−  Only deliver pre-approved packets
−  How is connection set up in the first place?
−  How does endpoint tell network what is ok?
−  How does network implement filtering?
−  What if partial deployment?

61

Thompson Virus

Ken Thompson self-replicating program
−  installed itself silently on every UNIX machine,

including new machines with new instruction sets
Aside: can you write a self-replicating C program?

−  program that when run, outputs itself
•  without reading any input files!

−  ex: main() { printf(“main () { printf(“main () …

Add backdoor to login.c

Step 1: modify login.c
A:

if (name == “ken”) {
 don’t check password;
 login ken as root;
}

Modification is too obvious; how do we hide it?

Hiding the change to login.c
Step 2: Modify the C compiler

B:
if see trigger {
 insert A into the input stream
}

Add trigger to login.c
/* gobblygook */

Now we don’t need to include the code for the
backdoor in login.c, just the trigger
−  But still too obvious; how do we hide the modification

to the C compiler?

Hiding the change to the compiler

Step 3: Modify the compiler
C:

if see trigger2 {
 insert B and C into the input stream
}

Compile the compiler with C present
−  now in object code for compiler

Replace C in the compiler source with trigger2

Compiler compiles the compiler
Every new version of compiler has code for B,C

included
−  as long as trigger2 is not removed
−  and compiled with an infected compiler
−  if compiler is for a completely new machine: cross-

compiled first on old machine using old compiler
Every new version of login.c has code for A

included
−  as long as trigger is not removed
−  and compiled with an infected compiler

