
11/17/08

1

P561: Network Systems
Week 8: Content distribution

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Today

Scalable content distribution
•  Infrastructure
•  Peer-to-peer

Observations on scaling techniques

2

The simplest case: Single server

DNS

Web
1. W

here is
cn

n.co
m?

2. 2
04.13

2.12
.31

3. Get index.html

4. Index.html

3

Single servers limit scalability

.

.

.

Vulnerable to flash
crowds, failures

4

Solution: Use a cluster of servers

Content is replicated across servers
Q: How to map users to servers?

5

Method 1: DNS

DNS responds with
different server IPs

DNS

S1

S2

S3

S1

S2

S3

6

11/17/08

2

Implications of using DNS
Names do not mean the same thing everywhere
Coarse granularity of load-balancing

•  Because DNS servers do not typically communicate with content
servers

•  Hard to account for heterogeneity among content servers or
requests

Hard to deal with server failures
Based on a topological assumption that is true often (today)

but not always
•  End hosts are near resolvers

Relatively easy to accomplish

7

Method 2: Load balancer

Load balancer maps incoming
connections to different servers

Load
balancer

8

Implications of using load balancers

Can achieve a finer degree of load balancing

Another piece of equipment to worry about
•  May hold state critical to the transaction
•  Typically replicated for redundancy
•  Fully distributed, software solutions are also available

(e.g., Windows NLB) but they serve limited topologies

9

Single location limits performance

.

.

.

10

Solution: Geo-replication

11

Mapping users to servers

1.  Use DNS to map a user to a nearby data center
−  Anycast is another option (used by DNS)

2.  Use a load balancer to map the request to
lightly loaded servers inside the data center

In some case, application-level redirection can also
occur

•  E.g., based on where the user profile is stored

12

11/17/08

3

Question

Did anyone change their mind after reading other
blog entries?

13

Problem

It can be too expensive to set up multiple data
centers across the globe

•  Content providers may lack expertise
•  Need to provision for peak load

Unanticipated need for scaling (e.g., flash crowds)

Solution: 3rd party Content Distribution Networks
(CDNs)

•  We’ll talk about Akamai (some slides courtesy Bruce Maggs)

14

Akamai
Goal(?): build a high-performance global CDN that

is robust to server and network hotspots

Overview:
•  Deploy a network of Web caches
•  Users fetch the top-level page (index.html) from the

origin server (cnn.com)
•  The embedded URLs are Akamaized

•  The page owner retains controls over what gets served
through Akamai

•  Use DNS to select a nearby Web cache
•  Return different server based on client location

15

Akamaizing Web pages

<html>
<head>
<title>Welcome to xyz.com!</title>
</head>
<body>
<img src=“
<img src=“
<h1>Welcome to our Web site!</h1>
Click here to enter
</body>
</html>

16

End User

Akamai DNS Resolution

Akamai High-Level DNS Servers
10 g.akamai.net

1

Browser’s
Cache

OS

2

Local Name
Server

3

xyz.com’s
nameserver

a212.g.akamai.net

15.15.125.6

16

15

11 20.20.123.55

Akamai Low-Level DNS Servers

12 a212.g.akamai.net

30.30.123.5 13

14

4 .com .net
 Root

(InterNIC)
10.10.123.5

akamai.net

17

Root

HLDNS

LLDNS

1 day

30 min.

30 sec.

Time To Live

TTL of DNS responses gets shorter
further down the hierarchy

DNS Time-To-Live

18

11/17/08

4

DNS maps

19

Map creation is based on measurements of:
−  Internet congestion
−  System loads
−  User demands
−  Server status

Maps are constantly recalculated:
−  Every few minutes for HLDNS
−  Every few seconds for LLDNS

Measured Akamai performance
(Cambridge)

20
[The measured performance of content distribution networks, 2000]

Measured Akamai performance
(Boulder)

Key takeaways
Pretty good overall

•  Not optimal but successfully avoids very bad choices
 This is often enough in many systems; finding the

absolute optimal is a lot harder

Performance varies with client location

22

Aside: Re-using Akamai maps

Can the Akamai maps be used for other purposes?

•  By Akamai itself
•  E.g., to load content from origin to edge servers

•  By others

23 24

Source

Peer 1

Peer

Peer

……..

Destination

Aside: Drafting behind Akamai (1/3)
[SIGCOMM 2006]

Goal: avoid any congestion near the source
by routing through one of the peers

11/17/08

5

25

Source

Peer 1

Peer

Peer

……..

Destination

DNS Server

Replica 3

Replica 2

Replica 1

Aside: Drafting behind Akamai (2/3)

Solution: Route through peers close
to replicas suggested by Akamai

26

Aside: Drafting behind Akamai (3/3)

80% Taiwan
15% Japan
5 % U.S.

75% U.K.
25% U.S.

Taiwan-UK UK-Taiwan

Page Served by Akamai

Why Akamai helps even though the top-level
page is fetched directly from the origin server?

27

Trends impacting Web cacheability
(and Akamai-like systems)

Dynamic content
Personalization
Security
Interactive features
Content providers want user data

New tools for structuring Web applications
Most content is multimedia

28

Peer-to-peer content distribution

When you cannot afford a CDN
•  For free or low-value (or illegal) content

Last week:
•  Napster, Gnutella
•  Do not scale

Today:
•  BitTorrent (some slides courtesy Nikitas Liogkas)
•  CoralCDN (some slides courtesy Mike Freedman)

29

BitTorrent overview

Keys ideas beyond what we have seen so far:
•  Break a file into pieces so that it can be

downloaded in parallel
•  Users interested in a file band together to

increase its availability
•  “Fair exchange” incents users to give-n-take

rather than just take

30

11/17/08

6

BitTorrent terminology

Swarm: group of nodes interested in the same file

Tracker: a node that tracks swarm’s membership

Seed: a peer that has the entire file

Leecher: a peer with incomplete file

31

new leecher

Joining a torrent

data
request

peer list

metadata
file

join

1

2 3

4
seed/leecher

website

tracker

Metadata file contains
1.  The file size
2. The piece size
3. SHA-1 hash of pieces
4. Tracker’s URL

32

!

Downloading data

I have leecher A

● Download pieces in parallel
● Verify them using hashes
● Advertise received pieces to the entire peer list
● Look for the rarest pieces

seed

 leecher B

leecher C

33

Uploading data (unchoking)

leecher A

seed

 leecher B

leecher C
leecher D

● Periodically calculate data-receiving rates
● Upload to (unchoke) the fastest k downloaders

•  Split upload capacity equally

● Optimistic unchoking
 ▪ periodically select a peer at random and upload to it
 ▪ continuously look for the fastest partners

34

Incentives and fairness in BitTorrent

Embedded in choke/unchoke mechanism
•  Tit-for-tat

Not perfect, i.e., several ways to “free-ride”
•  Download only from seeds; no need to upload
•  Connect to many peers and pick strategically
•  Multiple identities

Can do better with some intelligence

Good enough in practice?
•  Need some (how much?) altruism for the system to

function well?
35

BitTyrant [NSDI 2006]

36

11/17/08

7

CoralCDN

Goals and usage model is similar to Akamai
•  Minimize load on origin server
•  Modified URLs and DNS redirections

It is p2p but end users are not necessarily peers
•  CDN nodes are distinct from end users

Another perspective: It presents a possible (open)
way to build an Akamai-like system

37

CoralCDN overview

Implements an open CDN to which anyone can contribute

CDN only fetches once from origin server

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

38

httpprx
dnssrv

Browser

Resolver

DNS Redirection
Return proxy,
preferably one
near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

?

?

Origin
Server



39

How to find close proxies and
cached content?

DHTs can do that but a straightforward use has
significant limitations

How to map users to nearby proxies?
•  DNS servers measure paths to clients

How to transfer data from a nearby proxy?
•  Clustering and fetch from the closest cluster

How to prevent hotspots?
•  Rate-limiting and multi-inserts

Key enabler: DSHT (Coral)
40

DSHT: Hierarchy

None

< 60 ms

< 20 ms

Thresholds

A node has the same Id at each level

41

DSHT: Routing

None

< 60 ms

< 20 ms

Thresholds

Continues only if the key is not found at the closest cluster

42

11/17/08

8

DSHT: Preventing hotspots

NYU

  Proxies insert themselves in the DSHT after
caching content
  So other proxies do not go to the origin server

  Store value once in each level cluster
  Always storing at closest node causes hotspot

…

43

DSHT: Preventing hotspots (2)

Halt put routing at full and loaded node
−  Full → M vals/key with TTL > ½ insertion TTL
−  Loaded → β puts traverse node in past minute

…

…

44

Return servers within appropriate cluster
−  e.g., for resolver RTT = 19 ms, return from cluster < 20 ms

Use network hints to find nearby servers
−  i.e., client and server on same subnet

Otherwise, take random walk within cluster

DNS measurement mechanism

Resolver

Browser
Coral
httpprx
dnssrv

Server probes client (2 RTTs)

Coral
httpprx
dnssrv

45

CoralCDN and flash crowds

Local caches begin to handle
most requests

Coral hits in
20 ms cluster

Hits to origin
web server

46

End-to-end client latency

47

Scaling mechanisms encountered

Caching

Replication

Load balancing (distribution)

48

11/17/08

9

Why caching works?

Locality of reference
•  Temporal

•  If I accessed a resource recently, good chance that I’ll do it
again

•  Spatial
•  If I accessed a resource, good chance that my neighbor will do

it too

Skewed popularity distribution
•  Some content more popular than others
•  Top 10% of the content gets 90% of the requests

49

Zipf’s law

Zipf’s law: The frequency of an event P as a function of
rank i Pi is proportional to 1/iα (α = 1, classically)

50

Zipf’s law

Observed to be true for
−  Frequency of written words in English texts
−  Population of cities
−  Income of a company as a function of rank
−  Crashes per bug

Helps immensely with coverage in the
beginning and hurts after a while

51

Zipf’s law and the Web (1)
For a given server, page access by rank follows a Zipf-like

distribution (α is typically less than 1)

52

Zipf’s law and the Web (2)

At a given proxy, page access by clients follow a
Zipf-like distribution (α < 1; ~0.6-0.8)

53

Implications of Zipf’s law
For an infinite sized cache, the hit-ratio for a proxy cache

grows in a log-like fashion as a function of the client
population and the number of requests seen by the proxy

The hit-ratio of a web cache grows in a log-like fashion as a
function of the cache size

The probability that a document will be referenced k
requests after it was last referenced is roughly
proportional to 1/k.

54

11/17/08

10

55

Cacheable hit rates for UW proxies

Cacheable hit rate –
infinite storage, ignore
expirations

Average cacheable hit rate
increases from 20% to
41% with (perfect)
cooperative caching

56

UW & MS Cooperative Caching

57

Hit rate vs. client population

Small organizations
−  Significant increase in hit rate as client population increases
−  The reason why cooperative caching is effective for UW

Large organizations
−  Marginal increase in hit rate as client population increases

Zipf and p2p content [SOSP2003]

•  Zipf: popularity(nth most popular object) ~ 1/nα

•  Kazaa: the most popular objects are 100x less popular than Zipf
predicts

Kazaa: the most popular objects are 100x less popular
than Zipf predicts

58

Another non-Zipf workload

0.1

1

10

100

1000

1 10 100 1000 re
nt

al
 fr

eq
ue

nc
y

movie index

video store rentals

box office sales

Video rentals

59

Reason for the difference

Fetch-many vs. fetch-at-most-once

Web objects change over time
•  www.cnn.com is not always the same page
•  The same object is fetched may be fetched many times

by the same user

P2p objects do not change
•  “Mambo No. 5” is always the same song
•  The same object is not fetched again by a user

60

11/17/08

11

•  In the absence of new objects and users
–  fetch-many: hit rate is stable
–  fetch-at-most-once: hit rate degrades over time

Caching implications

61

New objects help caching hit rate

New objects cause cold misses but they replenish the highly
cacheable part of the Zipf curve

Rate needed is proportional to avg. per-user request rate

62

Cache removal policies

What:
•  Least recently used (LRU)
•  FIFO
•  Based on document size
•  Based on frequency of access

When:
•  On-demand
•  Periodically

63

Replication and consistency
How do we keep multiple copies of a data store

consistent?
•  Without copying the entire data upon every update

Apply same sequence of updates to each copy, in
the same order
−  Example: send updates to master; master copies exact

sequence of updates to each replica

Master

Replica

x” x’ z y x

Replica

x” x’ z y x

64

Replica consistency
While updates are propagating, which version(s) are

visible?
DNS solution: eventual consistency

−  changes made to a master server; copied in the background to
other replicas

−  in meantime can get inconsistent results, depending on which
replica you consult

Alternative: strict consistency
−  before making a change, notify all replicas to stop serving the

data temporarily (and invalidate any copies)
−  broadcast new version to each replica
−  when everyone is updated, allow servers to resume

65

Eventual Consistency Example

Server
replicas

clients

t+5:x’

x’

t+
2:

 x

t+
1:

 g
et

 x

t:x’

t+
4:

x’

t+
3:

ge
t x

66

11/17/08

12

Sequential Consistency Example

Server
replicas

clients

t+1:x’

x’

t+
2:

x’

t:x’

t+
2:

ac
k

t+
1:

x’

t+
3:

ac
k

t+5:ack

t+4:ack

Write doesn’t complete until all
copies invalidated or updated

67

Consistency trade-offs

Eventual vs. strict consistency brings out the trade-
off between consistency and availability

Brewer’s conjecture:
•  You cannot have all three of

•  Consistency
•  Availability
•  Partition-tolerance

68

Load balancing and the power of
two choices (randomization)

Case 1: What is the best way to implement a fully-
distributed load balancer?

Randomization is an attractive option
•  If you randomly distribute n tasks to n servers, w.h.p.,

the worst-case load on a server is log n/log log n
•  But if you randomly poll k servers and pick the least

loaded one, w.h.p. the worst-case load on a server is
(log log n / log d) + O(1)

 2 is much better than 1 and only slightly worse than 3

69

Load balancing and the power of
two choices (stale information)

Case 2: How to best distribute load based on old
information?

Picking the least loaded server leads to extremely
bad behavior

•  E.g., oscillations and hotspots

Better option: Pick servers at random
•  Considering two servers at random and picking the

less loaded one often performs very well

70

