P561: Network Systems
Week 5: Transport #1

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Administrivia

Homework #2
- Due next week (week 6), start of class
- Catalyst turnin

Fishnet Assignment #3
- Due week 7, startefelass
FRATpAY

Nou}

Nov [

Homework #1: General’s Paradox

Can we use messages and retries to synchronize
two machines so they are guaranteed to do some
operation at the same time?

- No. Why? o

/

General’s Paradox Illustrated

Consensus revisited

If distributed consensus is impossible, what then?

. TCP: can agree that destination received data
i e — —-—Nx\/,--

.. Distributed transactions (2 phase commit)
- Can agree to eventually do some operation

.. Paxos: non-blocking transactions
- Always safe, progress if no failures

Transport Challenge

IP: routers can be arbitrarily bad
- packets can be lost, reordered, duphcated, have
limited size & can be fragmented
TCP: applications need something better

- reliable delivery, in order delivery, no duplicates,
arbitrarily long streams of data, match
sender /receiver speed, process-to-process

Reliable Transmission

How do we send packets reliably?

Two mechanisms
- Acknowledgements
- Timeouts

Simplest reliable protocol: Stop and Wait

Stop and Wait

® Send a packet, wait until ack arrives
retransmit if no ack within timeout

® Receiver acks each packet as it arrives

Sender Recerver

Time

Time out

Time

Timeout

Timeout

Recovering from error

ACK lost

Timeout

Timeout

=

2

9&’

Packey

Packet lost

Tiumeout

Timeout

Eady timeout

How can we recognize resends?

Use unique ID for each pkt

P
- for both packets and acks \k{((l.

How many bits for the ID? &
: . : P
- For stop and wait, a single bit! Pkt g
~ assuming in-order delivery... y
A %{
,\LK

10

What if packets can be delayed?

Solutions?
- Neverreuse an [D?
- Change IP layer to eliminate
packet reordering?
- Prevent very late delivery?
« IP routers keep hop count per pkt,
discard if exceeded
« ID's not reused within delay bound
- TCP won't work without some
bound on how late packets can

arrive! /X ’Tﬂ'

Accept!

Reject!

11

What happens on reboot?

How do we distinguish packets sent before and
after reboot?
- Can't remember last sequence # used unless written
to stable storage (disk or NVRAM)
Solutions?
- Restart sequence # at 0?
- Assume/force boot to take max packet delay?
Include epoch number in packet (stored on disk)?
Ask other side what the last sequence # was? ~

- TCP sidesteps this problem with random initial seq =
(in each direction)

12

How do we keep the pipe full?

Unless the bandwidth*delay product
is small, stop and wait can't fill pipe

Solution: Send multiple packets
without waiting for first to be acked
Reliable, unordered delivery:
- Send new packet after each ack

- Sender keeps list of unack'ed packets;
resends after imeout

- Recelver same as stop&wait
How easy is it to write apps that
handle out of order delivery? 9
- How easy is it to test those apps? D

13

Sliding Window: Reliable, ordered

delivery
Two constraints:
- Receiver can't deliver packet to application until all
prior packets have arrived
- Sender must prevent buffer overflow at receiver
Solution: sliding window
- circular buffer at sender and receiver

+ packets in transit <= buffer size

« advance when sender and receiver agree packets at beginning
have been received

- How big should the window be?
« bandwidth * round trip delay

14

Sender/Receiver State

sender

packets sent and acked (LAR = last ack recvd)
packets sent but not vet acked

- packets not vet sent (LFS = last frame sent)

receiver

- packets received and acked (NFE = next frame
expected)

- packets received out of order

- packets not vet received (LFA = last frame ok)

15

Send Wind ow

\
6

01 2 3 4 =
sent x| x| x| x X
acked X
! \
LAR LFS
Receive Wind ow
£
01 2 3 4 = ¢
recvd x| x x| x| x| x
acked X | x
t \
NFE LFA

16

What if we lose a packet?

Go back N (original TCP)
- receiver acks “got up through k™ (*cumulative ack™)
- ok for receiver to buffer out of order packets
- on timeout, sender restarts from k+1
Selective retransmission (RFC 2018)
- receiver sends ack for each pkt in window
- on timeout, resend only missing packet

17

Can we shortcut timeout?

If packets usually arrive in order, out of order
delivery is (probably) a packet loss
- Negative ack
« receiver requests missing packet
— Fast retransnut (TCP)
« receiver acks with NFE-1 (or selective ack)

« if sender gets acks that don't advance NFE, resends missing
packet

18

Sender Algorithm

Send full window, set timeout
On receiving an ack:

ifit increases LAR (last ack received)

send next packet(s)
- no more than window size outstanding at once
else (already received this ack)
if receive multiple acks for LAR, next packet may have been
lost; retransmit LAR + 1 (and more if selective ack)

On timeout:

resend LAR + 1 (first packet not vet acked)

19

Receiver Algorithm

On packet arrival:

if packet is the NFE (next frame expected)

send ack

mcrease NFE

hand any packet(s) below NFE to application <
else if < NFE (packet already seen and acked)

send ack and discard // Q: why 1s ack needed? //
else (packet1s > NFE, armived out of order)

buffer and send ack for NFE — 1

-- signal sender that NFE might have been lost
-- and with selective ack: which packets correctly arrived

20

‘_

What if link is very lossy?

Wireless packet loss rates can be 10-30%

- end to end retransmission will still work

- will be inefficient, especially with go back N
Solution: hop by hop retransmission

- performance optimization, not for correctness
End to end principle

- ok to do optimizations at lower layer

- still need end to end retransmission; why? ///

21

Avoiding burstiness: ack pacing

hottleneck

packets

Sender Receiver

Window size = round trip delay * bit rate) _

22

How many sequence #’s?

Window size + 17
- Suppose window size = 3 &ﬁ
- Sequence space: 01230123 \
- send o1 2, all amive \3

« if acks are lost, resend 0 1 2
« if acks arrive, send new 3 0 1

23

How do we determine timeouts?

If timeout too small, useless retransmits
- can lead to congestion collapse (and did in 86)

- as load increases, longer delays, more timeouts, more
retransmissions, more load, longer delays, more

timeouts ... k)
- Dynamic instability’! : S’
If timeout too big, inefficient
- wait too long to send missing packet o |

Timeout should be based on actual round trip time
(RTT)
- varies with destination subnet, routing changes,
congestion, ...

24

Estimating RTTs

Idea: Adapt based on recent past measurements

For each packet, note time sent and time ack received
Compute RTT samples and average recent samples for
timeout

EstimatedRTT = ax EstimatedRTT + (1 - o) X
SampleRTT

Tlus 1s an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
a=081to0.0.

Set timeout to small multiple (2) of the estimate

25

Estimated Retransmit Timer

26

Retransmission ambiguity

How do we distinguish first ack
from retransmitted ack?
- First send to first ack?
« What if ack dropped? Tim
~ Last send to last ack?)
« What if last ack dropped?
Might never be able to fix too short
a imeout!

27

Retransmission ambiguity:
Solutions?
TCP: Karn-Partridge
- 1gnore RTT estimates for retransmitted pkts
- double timeout on every retransmission

Add sequence #’s to retransmissions (retry #1,
retry #2, ...)

Modern TCP (RFC 1323): Add timestamp into
packet header; ack returns timestamp /

28

Jacobson/Karels Algorithm

Problem:
- Variance in RTTs gets large as network gets loaded

Average RTT isn't a good predictor when we need it
most

Solution: Track variance too.

Difference = SampleRTT — EstimatedRTT
EstimatedRTT = EstimatedRTT + (& x Difference)
Deviation = Deviation + §(| Difference|- Deviation)
Timeout = p x EstimatedRTT + ¢ x Deviation
Inpractice,6=1/8, p=1and ¢ =4

29

Estimate with Mean + Variance

e e e Ry
A
\
- ; *\‘ 'f
= AN 2
-t | 1 \ i’
gi “T 1R /\IJ
s f | /N
+ '\I\/_ r\/\/~’\ i \V\ y
i -"-.|i \""J: o "i I
o = 1 ey 1 1
L » » n “n N " »n L4 L w i
Pyome

30

Transport: Practice

Protocols

- IP -- Internet protocol

- UDP --user datagram protocol

- TCP -- transmission control protocol (.0, :
- RPC --remote procedure call WA de o
- HTTP -- hypertext transfer protocol
- And a bunch more. ..

31

How do we connect processes?

IP provides host to host packet delivery
- header has source, destination IP address

For applications to communicate, need to demux
packets sent to host to target app
- Web browser (HTTP), Email servers (SMTP),
hostname translation (DNS), Real Audio playver
(RTSP), etc.

- Process id is OS-specific and transient

32

Ports

Port is a mailbox that processes “rent”
— Uniquely identify communication endpoint as
(IP address, protocol, port) %o
How do we pick port #'s?
- Client needs to know port # to send server arequest
- Servers bind to "well-known” port numbers
. Ex: HTTP 80, SMTP 25, DNS 53, ..
« Ports below 1024 reserved for “well-known” services
- Clients use OS-assigned temporary (ephemeral)
ports
« Above 1024, recycled by OS when client finished

33

Sockets

OS abstraction representing communication
endpoint
- Layer on top of TCP, UDP, local pipes
server (passive open)
- bind -- socket to specific local port
- listen -- wait for client to connect
client (active open)
- connect -- to specific remote port

34

User Datagram Protocol (UDP)

Provides applicati lication delivery

Header haS source & dest port #s
- IP header provides source, dest IP addresses

Deliver to destination port on dest machine

Reply returns to source port on source machine
No retransmissions, no sequence #s
=> stateless

35

UDP Delivery

[Application] [Applicaticin] [Application] h

jprocess process process
... Kernel
Ports — boundary
Message
Queues |

Packets arrive

36

A brief Internet history...

1991
WWWHTTP
A
1972 1990
TELNET ARPANET 1995
RFC318 1086 dissolded Mult-backbone
t t
1969 1973 1977 1082 1054 NNTP 1992 Intéme
977
ARPANET | FTP MAL | Tcpew Jons O MBONE
created FF4454 =4y W : {

37

TCP: This is your life...

1975
Three-way handshale
Fayrond Tomlinson
[n SIGCONM 75

1974
TCP described by

Vint Cerfand Bob Kain

1934
Nagel's algorithm 1987
to reduce overhead Kamm's algorithin 1928
of small packets, to better estimate 4.3B5D Reno
lggp%edicts anes&on 1086 roundripht 1088 o
BSD Unix 4 Zollapse delayeNACK's
Congestion Van Jacobson's
/3” orta TCP/IP collapse algorithims
1982 °\ | ohsefved congestion avoidance
[TCP & IP and congestion control
RFC 79 |

(most implemented in

38

TCP: After 1990

1994 1006
LR SACK TCP
(Braden) (Floyd etal)
Transgction Selective
1993 1004 1P 19gé clnowfedgement; dog
TCP Vegas ECN Hoe | FACKTCP
(Brakmo et al) (Floyd) Improving TCP (Mathis et al)
real congestion Explicit startip extensignto SACK
volgance Congegtion
Notification
|

1993 1994 1996

39

Transmission Control Protocol (TCP)

. % iy . o

Reliable bi-directional byte stream \\O?
- No message boundaries : X)
- Ports as application endpoints >

Sliding window, go back N/SACK, RTT est, ...

- Highly tumed congestion control algorithm
Flow control

- prevent sender from overrunning receiver buffers
Connection setup

- negohate buffer sizes and mitial seq #s

- Needs to work between all tvpes of computers

(supercomputer -> 8086)

40

TCP Packet Header

Source, destination ports

Sequence # (bytes being s a
sent) _

Ack # (next byte i epeee L yle
expected) MBS, Admowedgment Lyte

Receive window size ™ ° @ (m""“"“""’; y,

Checksum Checksm

Flags: SYN, FIN, RST Optors (vorene

JWMN\/M

41

TCP Delivery

(Application process
-

Transmit segments
| Segment| | Segment|- .- | Segment| ‘
L e

42

TCP Sliding Window

Per-byte, not per-packet (why?)

- send packet says "here are bytes -k~

- ack says "received up to byte k”

. N

Send buffer >= send window

- can buffer writes in kernel before sending

- writer blocks if try to write past send buffer
Receive buffer >= receive window

- buffer acked data in kermel, wait for reads

- reader blocks if trv to read past acked data

43

Visualizing the window

A offered window b

v

(advertised by recerver
usable window

0123®56789101112

sent and can send ASAP
- W

>
acknowledged cent, not ACKed

v

an't send until -

window moves

Left side of window advances when data 1s acknowledged.

Right side controlled by size of window advertisement

44

Flow Control

What if sender process is faster than receiver
process?
- Data builds up in receive window
- 1f data 1s acked, sender will send more!
- If data 1s not acked, sender will retransmait’
Sender must transmit data no faster than it can be
consumed by the receiver
- Receiver might be a slow machine
App might cornsurmmeda ow!
Sender sliding window <= free receiver buffer
- Advertised window = # of free bytes; ifzenﬁ)

45

Sender and Receiver Buftering

Sending application Receiving application

TCP / TCP
LastByteVritten yLastByteRead
1

; b

LastByteAcked LastByteSent NextByteExpected LastByteRcvd

. = available buffer D = huffer in use

46

Example — Exchange of Packets

T=1——_ SEQ=1
ACK=2;WIN=3
T=2[SEQ= Receiver has buffer of

o e R size 4 and application
ACK=3; WIN 2 doesn't read

T=3| /
Stall due to
flow control T=4t
here "
— T=5

T=6

47

Example — Bufter at Sender

= (e (c[2] @
=sent

. =advertised

48

How does sender know when to
resuime Selldillg?
If receive window = 0, sender stops
- no data => no acks => no window updates
Sender periodically pings receiver with one byte
packet
- receiver acks with current window size
Why not have receiver ping sender?

49

Should sender be greedy (I)?

Should sender transmit as soon as any space
opens in receive window?
- Silly window syndrome
« receive window opens a few bytes /
« sender transmits little packet
« receive window closes
Solution (Clark, 1982): sender doesn't resume
sending until window is half open

50

Should sender be greedy (I1)?

App writes a few bytes; send a packet?
Don't want to send a packet for every keystroke /
- If buffered writes >= max segment size
- 1if app says "push” (ex: telnet, on carriage reburn)
- after timeout (ex: 0.5 sec) /
Nagle’s algorithm
- Never send two partial segments; wait for first to be
acked, before sending next
- Selt-adaptive: can send lots of tinygrams if network is
being responsive
But (!) poor interaction with delayed acks (later)

51

TCP Connection Management

Setup
- assymetric 3-way handshake
Transfer
- shicing window;, data and acks in both directions
Teardown
- symmetric 2-way handshake
Client-server model
- mitator (client) contacts server
- listener (server) responds, provides service

52

Three-Way Handshake

Opens both directions for transfer

Active participant Passive participant
(client) (server)
- ik 4
e q
(Cl(_ J—
il N

53

Do we need 3-way handshake?

Allows both sides to

- allocate state for buffer size, state variables, ...

- calculate esiimated RTT, estimated MTU, etc.
Helps prevent

- Duplicates across incarnations

- Intentional hijacking

« random nonces => weak form of authentication

Short-circuit?

- Persistent connections in HTTP (keep connection open)

- Transactional TCP (save seq #, reuse on reopen)

- But congestion control effects dominate

54

TCP Transter

Connection is bi-directional
- acks can carry response data

(client) (server)

95

TCP Connection Teardown

Symmetric: either side can close connection (or RST!)
Web server Web browser

-open connection; data
be continue to be sent

Can reclaim connection
after 2 MSL

/ £ Can reclaim connection right away
(must be at least 1MSL after first FIN|

56

TCP State Transitions

9

e €
!j\i

Close

]

IFIN

ESTABLISHE

Close [FIN

FIN_WAIT _1

ACK

FINFACK

FIN_WAIT 2

_ FINFACK

LHN:ACK

CLOSING

Ack Timeout after bwo

SYN_SENT]

T
g

CLOSE_WAI
Close [FIN

LAST_ACK
ACK

segment lifetimes

[TIME wWAIT

CLOSED

57

TCP Connection Setup, with States

Active participant
(client)

SYN_SENT

ESTABLISHED

Passive participant
(server)
LISTEN

SYN_RCVD

ESTABLISHED

58

TCP Connection Teardown

Web server
FIN_WAIT_1

FIN_WAIT 2
TIME_WAIT

CLOSED

FIN

pCY

FIN

ACk

Web browser

CLOSE_WAIT

LAST_ACK

CLOSED

59

The TIME WAIT State

We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the
close

Why?

ACK might have been lost and so FIN will be resent
Could interfere with a subsequent connection

60

TCP Handshake in an
Uncooperative Internet

TCP Hijacking Malicious attacker
~ ifseq # is predictable, Cfent Server
attacker can insert packets

mto TCP stream

- many implementations of
TCP simply bumped

previous seq # by 1
- attacker can leamm seq # by
setting up a connection
Solution: use random
initial sequence #’s

. . fake web page, y+MSS
- weak form of s yeb 0a0e:
authentication i

61

TCP Handshake in an
Uncooperative Internet

TCP SYN flood
- server maintains state
for every open
connection

Malicious attacker Server

- 1f attacker spoofs source
addresses, can cause
server to open lots of
connections

- eventually, server runs
out of memory

62

TCP SYN cookies

Solution: SYN cookies Client

- Server keeps no state in SYN, so
response to SYN; instead q“e”CeNum -
makes client store state d
- Server picks returm seq # v L oy
= (© that encrypts x N+ RO

- Gets © +1 from sender;
unpacks to vield x

\
Can data arrive before ACK? >

Server

63

How can TCP choose segment size?

Pick LAN MTU as segment size?
- LAN MTU can be larger than WAN MTU
- E.g , Gigabit Ethernet jumbo frames
Pick smallest MTU across all networks in
Internet?
- Most traffic is local!
« Local file server, web proxy, DNS cache, ...
- Increases packet processing overhead
Discover MTU to each destination? (IP DF bit)

Guess?

64

Layering Revisited

IP layer “transparent” packet delivery
- Implementation decisions aftect higher layers (and

vice versa)
« Fragmentation => reassembly overhead
— path MTU discovery o’

« Packet loss => congestion or lossy link?
— link layer retransmission /
« Reordering => packet loss or multipath?
— router hardware tries to keep packets in order
« FIFO vs. active queue management

65

IP Packet Header Limitations

Fixed size fields in IPv4 packet header

- source/destination address (32 bits)
o limits to ~ 4B unique public addlmbout 600M allocated
« NATs map multiple hosts to single public address
- IPID field (16 bits)
« limits to 65K fragmented packets at once => 100MB in flight?
« in practice, fewer than 1% of all packets fragment
- Type of service (8 bits)
« unused until recently; used to express priorities
~ TTL (8 bits)
« limits max Internet path length to 255; typical max is 30
- Length (16 bits)
« Much larger than most link layer MTU'S//

66

TCP Packet Header Limitations

Fixed size fields in TCP packet header
- seq # /ack # -- 32 bits (can't wrap within MSL)
« T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds
source/destination port # -- 16 bits
« limits # of connections between two machines (NATSs)
« okto give each machine multiple IP addresses
header length
« limits # of options
receive window size -- 16 bits (64KB)
+ rate = window size / delay
« Ex s delay => rate ~ 5Mb/sec
FC 1323: receive window scaling
ill a performance problem

67

HTTP on TCP

How do we reduce the # of
messages?

Delayed ack: wait for 200ms for
reply or another pkt arrival

TCP RST from web server

i B _YN

———

SYN+ACK

P

-~

——_ACK

———_http get

—

——

ACK __—
http data—

—__ACK

—FIN

68

Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?

- Congestion control

« Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses - >

« Don't send faster than network can accept

- Fairness
« How do we allocate bandwidth among different users?
« Each user should (?) get fair share of bandwidth

69

Congestion

Router |LJ L J L J _
T 1.5-Mbps T1 link

Packets dropped here

Buffer absorbs bursts when imput rate > output
[f sending rate 1s persistently > drain rate, queue bulds
Dropped packets represent wasted work

Chapter 6, Figure 1

70

Fairness

Router

Router .
Destinatio

2

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link ... depends on paths
and other traffic

Chapter 6, Figure 2

71

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

- Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet 1s retransmitted
many tumes

- Synchromzed behavior: network oscillates between

loaded and umloaded

72

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth
- Robust RTT estimation
- Additive mncrease /multiplicative decrease
+ oscillate around bottleneck capacity
- Slow start
+ quickly identify bottleneck capacity
Fast retransnut
- Fastrecovery

73

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT
Multiplicative decrease
- Timeout => dropped packet => cut window size in
half
« and therefore cut sending rate in half
Additive increase
- Ack armives => no drop => increase window size by
one packet /'window
« and therefore increase sending rate a little

74

TCP “Sawtooth”

Oscillates around bottleneck bandwidth
- adjusts to changes in competing traffic

75

Slow start

How do we find bottleneck bandwidth?
- Start by sending a single packet
« start slow to avoid overwhelming network
- Multiplicative increase until get packet loss
+ quickly find bottleneck
- Remember previous max window size

« shift into linear increase/ multiplicative decrease when get
close to previous max ~ bottleneck rate

+ called “congestion avoidance”

76

Slow Start

Quickly find the bottleneck bandwidth

77

Source

TCP Mechanics Illustrated

Router Dest

100 Mbps 10 Mbps

0.9 ms latency o litaney

78

78

Slow Start Problems

Bursty traffic source
— will fill up router queues, causing losses for other flows
- solution: ack pacing
Slow start usually overshoots bottleneck
- will lose many packets in window
- solution: remember previous threshold
Short flows
- Can spend entire time 1n slow start!
- solution: persistent connections?

79

Avoiding burstiness: ack pacing

hottleneck

packets

Sender Receiver

acks

Window size = round trip delay * bit rate

80

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
- slow start /additive increase are
designed to cause packet loss
After loss, use slow start to regain :
ack pacing \

TS

meout

1

|

- switch to linear increase at last
successful rate

)

- “congestion avoidance”

81

Putting It All Together

Timeouts dominate performance!

82

Fast Retransmit

Can we detect packet loss without a
timeout?
- Receiver will reply to each packet with
an ack for last byte received in order
Duplicate acks imply either
- packet reordering (route change)
- packet loss

TCP Tahoe

- resend if sender gets three duplicate
acks, without waiting for timeout

83

Fast Retransmit Caveats

Assumes in order packet delivery
- Recent proposal: measure rate of out of order
delivery; dymamically adjust number of dup acks
needed for retransnut
Doesn’'t work with small windows (e.g. modems)
- what i1f window size <=3
Doesn’t work if many packets are lost

- example: at peak of slow start, might lose many
packets

84

Fast Retransmit

Slow Start + Congestion Avoidance + Fast

" Retransmit
16 2 A >
’)
H ,-"' s
12 }l i P y.
wndew 10 + | 1 P V.
(in s) r & |' /
il # ,
/ " l [
. A T ; | /
% ' i
/ / .
4 4 ,‘I \ I ,\I
/ | X | /
pi / | 4
V Y
L e e
1 g &

2 9 1011 12 13 14 15 16 17 158 12 20 21 22 2

round-Lrp times

Regaining ack pacing limits performance

85

Fast Recovery

Use duplicate acks to maintain ack
pacing
- duplicate ack => packet left network
- afterloss, send packet after every
other acknowledgement
Doesn't work if lose many packets in a
Irow
- fall back on timeout and slow start to
reestablish ack pacing

86

Fast Recovery

Slow Start + Congestion Avoidance + Fast

1 Retransmit + Fast Recovery
16 4 ; »
1 | \ |
B9 fJ ‘ |
wndow 10 4 ,o'/. \ :"f »
e / \ | \H __
g | | p ¥

0 1 2 3 4 5 ¢ 7 % 92 1011 1213 14 1516 17 18 12 2 21 22 23 4 25
ound £rp tan s

87

Delayed ACKS

Problem:
- Inrequest,/response programs, server will send
separate ACK and response packets
« computing the response can take time
TCP solution:
- Don't ACK data immediately
- Wait 200ms (must be less than 500ms)
- Must ACK every other packet
- Mustnot delay duplicate ACKs

88

Delayed Acks

Recall that acks are delayed by 200ms to wait for
application to provide data
But (!) TCP congestion control triggered by acks
- if receive half as many acks => window grows half as
fast
Slow start with window =1

- ack will be delayed, even though sender i1s waiting for
ack to expand window

89

What if two TCPs share ink?

Reach equilibrium independent of initial bw
- assuming equal RTTs, "fair” drops at the router

90

Sending Rate for A

Equilibrium Prooft

Fair Allocation

Link Bandwidth

A J

Sending Rate for B

91

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what's left.

92

What if two ditterent TCP
implementations share link?
If cut back more slowly after drops => will grab
bigger share
If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!

- Many TCP “accelerators”

- Easy to improve perf at expense of network
One solution: enforce good behavior at router

93

What if TCP connection is short?

Slow start dominates performance
- What if network 1s unloaded?
- Burstiness causes extra drops

Packet losses unreliable indicator
- can lose conmection setup packet
- can get drop when connection near done
- signal unrelated to sending rate

In limit, have to signal every connection
- 50% loss rate as mcrease # of connections

94

Example: 10KB document
10Mb/s Ethernet,7o0ms RTT, 536 MSS

Ethernet ~ 10 Mb/s

64KB window, 7oms RTT ~ 7.5 Mb/s
can only use 10KB window ~ 1.2 MDb/s
5% drop rate ~ 275 Kb/s (steady state)
model imeouts ~ 228 Kb/s

slow start, no losses ~ 140 Kb/s

slow start, with 5% drop ~ 75 Kb/s

95

Bandwidth (Kbps)

Short flow bandwidth

- median

average

22 9 [o 10 120 196

Packet loss rate (%)

Flow length=10Kbytes, RTT=70ms

96

TCP over Wireless

What's the problem?

How might we fix it?

97

97

TCP over 10Gbps Pipes

What's the problem?

How might we fix it?

98

98

TCP and ISP router bufters

What's the problem?

How might we fix it?

99

99

TCP and Real-time Flows

What's the problem?

How might we fix it?

100

100

