
CSE 588 Scribe Notes, 5/7/02 (First half of class) Kevin T. Manley
Class started with the TCP Congestion game. The network we simulated was similar to the followingdiagram:

Source
1KB pkts
xmit
1pkt/sec

FIFO
Router
(4KB buff) Sink

1KBps BW
Latency=1

Infinite BW, Latency=2

Inf. BW
Latency=1

The total round trip time (RTT) for this network is 4. The bottleneck bandwidth is 1KBps. The idealwindow size is the bottleneck bandwidth * RTT = 1KBps * 4 = 4KBps. Given 1KB packets, the idealwindow size is 4 packets.
We first compare the performance of 3 kinds of sources using different sending policies. The first uses asimple stop and wait algorithm. This is the same as using a fixed window of size=1. The second uses afixed window of ideal size=4. The third uses “TCP Tahoe” congestion avoidance/control (this includesRTT estimation, slow-start, and additive increase/multiplicative decrease but not fast retransmit). Notethat flow control is not an issue here because the sink has an infinite window. We are concerned onlywith congestion avoidance/control.

We simulate packet flow over 1000 time steps. Since the bottleneck link only supports transmitting one1KB packet per time step, the max packet sequence number over 1000 time steps is 1000. Note that thesource using a fixed window of ideal size=4 utilizes 100% of the available bandwidth. On the otherhand, the fixed window source using stop-and-wait only transmits 250 packets in the same amount oftime. Thus, the stop-and-wait source only utilizes 25% of the available bandwidth. Performance of thestop-and-wait source decreases as the bandwidth-delay product increases.



The TCP Tahoe source utilizes close to the maximum bandwidth of the link without any need forconfiguring an ideal window size. TCP Tahoe converges on a window size close to ideal bycontinuously probing for additional bandwidth and backing off when packet losses are detected. Thejags in the chart line for TCP Tahoe shows the occasional retransmissions that occur as a result of thesource periodically exceeding its ideal sending rate, which fills the buffer at the bottleneck router andforces the router to drop packets.

This chart shows the router queue size and cumulative number of dropped packets over time for the TCPTahoe source. The router can buffer up to 4 packets. When the connection starts the source initiatesslow-start. During this time, the source’s congestion window is opened exponentially. This causes thebottleneck router’s buffer to fill rapidly and forces the router to drop packets. The source detects thepacket loss some time later (when expected ACKs do not arrive from the sink) and throttles back itssending rate. However, after this point the source continues to open its congestion window additively,probing for additional bandwidth. Again, this periodically causes the buffers at the bottleneck router tofill, resulting in further packets loss. This cycle repeats during the lifetime of the connection. Note thatthe source can only detect packet loss by assuming that an ACK that doesn’t arrive in time indicates asent packet was lost. The source needs accurate RTT estimation to set its packet retransmit timer to avalue appropriate for the current connection.



This chart shows the TCP Tahoe source’s congestion window size over time, as well as the cumulativenumber of packets dropped at the router. The exponential increase in CW size due to slow-start isclearly visible at the left side of the chart. Note that the source far overshoots the available bandwidth ofthe connection initially, resulting in multiple dropped packets. The source reacts by setting its CWthreshold (ssthresh--described in Appendix B of “Congestion Avoidance and Control”) to half itsprevious value, dropping its congestion window to one, and reinitiating slow start to the threshold level.After reaching the threshold level, additive increase takes over. Periodically even additive increasecauses a packet loss. Note that after each loss it takes some amount of time for the source to detect theloss and drop its congestion window back to 1. This reaction time is ideally <= 1 RTT--again thisemphasizes the importance of good RTT estimation at the source.
After playing the TCP congestion game, we discussed some other potential solutions to congestionavoidance/control:- Equalize bandwidth (avoid bottleneck links). Not viable since you can’t control end-hostconnectivity.- Use more buffering. It turns out more buffering only hurts performance, since it delays packetsand allows slow-start to increase the congestion window even further past the ideal size. Anyway“more” buffering can never be enough if the router’s inbound and outbound links are unbalanced (youwould need infinite buffering). The best size for the router buffer for a flow is the bandwidth-delayproduct for that flow.- ICMP source quench. Proposed, but nobody uses it. The main problem is that it adds morepackets to an already congested network.- Router assist . Mark packets when average queue length > x. End host must include the markbit in ACKs to the source. This strategy is used by DECbit and RED.- Better end-host software. TCP Vegas is an example of this.


