Lecture Note 04/30/2002

TCP Basic Design
- Port — mailboxes on machines
o www.iana.org (port assignment)
o reserved ports < 1024
- Packet
o To-port
o From-port
o Checksum
= for TCP header + TCP data only, IP checksum is for IP header
only
= [sit even the right algorithm to detect network problems?
= (Can’t detect “bit-flips”
- API: 2-way byte stream
Clients / servers
Connect / listen
Read / write (or vice versa)
From application’s perspective, it should be able to write/read arbitrary
size of data, but does not need to be the same size on either sides (i.e.
client or server)
Send / receive buffers
Data are divided into segments to be sent to the receiver
Receiver’s application will retreive data from the receiver’s buffer
o How to pick TCP segment size? IP MTU size — TCP header size
- Packet loss / ARQ
o Timeouts and restransmissions
o If checksum detects problem for the packet, host will not send an ACK
o IP only hands to TCP the entire TCP packet after all fragments are
ensembled
o Need some unique number mechanism to distinguish retransmission
packets (from sender and receiver ends)
- SCTP: transport protocol based on object model
- Sliding Window
o To increase throughput of pipe
o Propagation delay, transmission delay, bandwidth
o Allow multiple packets to be send
o Sliding window size? Depends on RTT * bandwidth of pipe.
= Has to be smaller than both the send and receive window sizes
Identify each packet by a sequence number
Also to need to identify ACK numbers
o Label sequence # for packet or bytes? TCP: bytes
= Packet sequence #
* Problem: if MTU estimation has changed in between
retransmssion, do we still retransmit the same amount of
data?

O O O O

O O O

O O



*  Why do we have separate ACK #?
* Performance improvement
* Ability to combile sending data with ACKs
* Piggy back data along with ACK (e.g. GET request, ACK
for the GET request as well as reply data)
* Delay ACKs
o waits for 200ms to see if there are data to reply
along with ACKs; if timeouts, just send back ACKs
o design and implementation are much implemented
* Negative ACK: sent by receiver when it does not receive an
expected packet (i.e. out-of-order packets)

- Fast retransmit

- Timeouts
o Start with a fixed number (3 seconds)
o Measure (exponentially weighted)
o RTT-est=RTT-old* + RTT-new (1 - )
o Problems:

=  What if loss? Timeout, then double length of timeout
= Congestion — increasing RTT
e RTT - variance
* Total timeout = RTT-est + variance * constant (e.g. 4)

- Flow control

O

If receiver is slow, sender is not allowed to send more packets than what
the receiver can handle
Receive sends back (advertises) remaining receive window size back to
sender
Once receiver buffer is full, sender will periodically asks receiver for the
new receive window size
Silly window syndrome avoidance
* Only send back new receive window size if it is more than half full
Nagle’s algorithm:
= The slower the connection (or longer latency), the more bytes
should be packaged up (versus sending one byte at a time) while
transmitting data for applications like Telnet.



