
Lecture Note 04/30/2002

TCP Basic Design
- Port – mailboxes on machines

o www.iana.org (port assignment)
o reserved ports < 1024

- Packet
o To-port
o From-port
o Checksum

ß for TCP header + TCP data only, IP checksum is for IP header
only

ß Is it even the right algorithm to detect network problems?
ß Can’t detect “bit-flips”

- API : 2-way byte stream
o Clients / servers
o Connect / listen
o Read / write (or vice versa)
o From application’s perspective, it should be able to write/read arbitrary

size of data, but does not need to be the same size on either sides (i.e.
client or server)

o Send / receive buffers
o Data are divided into segments to be sent to the receiver
o Receiver’s application will retreive data from the receiver’s buffer
o How to pick TCP segment size? IP MTU size – TCP header size

- Packet loss / ARQ
o Timeouts and restransmissions
o If checksum detects problem for the packet, host will not send an ACK
o IP only hands to TCP the entire TCP packet after all fragments are

ensembled
o Need some unique number mechanism to distinguish retransmission

packets (from sender and receiver ends)
- SCTP: transport protocol based on object model
- Sliding Window

o To increase throughput of pipe
o Propagation delay, transmission delay, bandwidth
o Allow multiple packets to be send
o Sliding window size? Depends on RTT * bandwidth of pipe.

ß Has to be smaller than both the send and receive window sizes
o Identify each packet by a sequence number
o Also to need to identify ACK numbers
o Label sequence # for packet or bytes? TCP: bytes

ß Packet sequence #
• Problem: if MTU estimation has changed in between

retransmssion, do we still retransmit the same amount of
data?

ß Why do we have separate ACK #?
• Performance improvement
• Ability to combile sending data with ACKs
• Piggy back data along with ACK (e.g. GET request, ACK

for the GET request as well as reply data)
• Delay ACKs

o waits for 200ms to see if there are data to reply
along with ACKs; if timeouts, just send back ACKs

o design and implementation are much implemented
• Negative ACK: sent by receiver when it does not receive an

expected packet (i.e. out-of-order packets)
- Fast retransmit
- Timeouts

o Start with a fixed number (3 seconds)
o Measure (exponentially weighted)
o RTT – est = RTT-old * _ + RTT-new (1 – _)
o Problems:

ß What if loss? Timeout, then double length of timeout
ß Congestion – increasing RTT

• RTT – variance
• Total timeout = RTT-est + variance * constant (e.g. 4)

- Flow control
o If receiver is slow, sender is not allowed to send more packets than what

the receiver can handle
o Receive sends back (advertises) remaining receive window size back to

sender
o Once receiver buffer is full, sender will periodically asks receiver for the

new receive window size
o Silly window syndrome avoidance

ß Only send back new receive window size if it is more than half full
o Nagle’s algorithm:

ß The slower the connection (or longer latency), the more bytes
should be packaged up (versus sending one byte at a time) while
transmitting data for applications like Telnet.

