Study sheet 2: curves

Problem 1 A Bézier curve of degree n, which (for the purposes of this problem) we'll donate by $Q^{n}(u)$, can be defined in terms of the locations of its $n+1$ control points $\left\{V_{0}, \ldots, V_{n}\right\}$:

$$
Q^{n}(u)=\sum_{i=0}^{n} V_{i}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

a) Use de Casteljau's algorithm to find the (approximate) position of the Bézier curves $Q^{3}(u)$ and $Q^{4}(u)$ defined by the two control polygons below at $u=1 / 3$:

True or false:
b) Every Bézier curve $Q^{1}(u)$ is a line segment (assuming no repeated control points).
c) Every Bézier curve $Q^{2}(u)$ lies in a plane.
d) Moving one control point on a Bézier curve generally changes the whole curve.

Problem 2 More complex curves can be designed by piecing together different Bézier curves to make mathematical "splines." Two popular splines are the Bspline and the Catmull-Rom spline. If $\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$ and $\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$ are cubic B-spline and Catmull-Rom spline control points, respectively, then the corresponding Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ can be constructed by the following identity:

$$
\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rrrr}
0 & 6 & 0 & 0 \\
-1 & 6 & 1 & 0 \\
0 & 1 & 6 & -1 \\
0 & 0 & 6 & 0
\end{array}\right]\left[\begin{array}{l}
C_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right]
$$

True or false:
a) B-splines and Catmull-Rom splines both have C^{2} continuity.
b) Neither B-splines nor Catmull-Rom splines interpolate their control points.
c) B-splines and Catmull-Rom splines both provide local control.

Problem 2 (continued)
d) The points $\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$ below are control points for a cubic B-spline. Construct, as carefully as you can on the diagram below, the Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ corresponding to the same curve.
e) The points $\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$ below are control points for a cubic CatmullRom spline. Construct, as carefully as you can on the diagram below, the Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ corresponding to the same curve.

Problem 3

In class, we described the process of creating subdivision curves by starting with a sequence of splitting and averaging steps, followed by an evaluation mask that sends points to their limit positions. Let's assume that we have the following averaging mask:

$$
\left(r_{-1}, r_{0}, r_{1}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

Starting with the control polygon below:

1. Insert the vertices that correspond to the splitting step and label each with an \mathbf{S}.
2. Apply the averaging mask, indicate the new vertex positions, and label each with an A.
3. Indicate the resulting polygon with solid lines.
