Notes from the Introduction Session

For the Trace Project

Wow! You're about to write part of a raytracer. Raytracers are often big programs. They're very much the compilers of the graphics world: they compile some sort of scene description into an array of colors. Fortunately, this raytracer is actually pretty small.  It has a limited set of base features, and only has about 5000 lines of C++ code behind it.

Fortunately, its features are a good solid core, and there’s plenty of room for you to add and adjust to your heart’s content.

Part I: This Project

After you have looked at the sample solution and unpacked the skeleton, you will probably want to take some time to just look through the code and figure out what is going on where.  In this section, I’ll describe some of the main files and data structures, as well as show what calls what in a typical run of the program.

Tour of Files

To begin, there are quite a few files associated with this project.  Some of the main ones are as follows:

algebra.h
This is a good file to become very familiar with.  It contains two important classes, vec3 and vec4.  These are a 3-component vector and 4-component vector respectively.  Almost all the math you do will be in terms of vectors.  The interface is fairly intuitive, letting you do most algebra operations on vectors with no special syntax, but it still pays to know what’s available now.

ray.h
A useful one to know as well.  A ray is basically a position and a direction, someplace in 3D space.  Also defined in this file is a isect, which contains information about the point where a ray intersected an object.  It contains, among other things, a pointer to the object, the surface normal at the intersection, and a “t” value to use in calculating the intersection point.

trace.cpp
This is where raytracing begins.  For each pixel in the image, traceRay() gets called.  It gets passed a pointer to the scene geometry information, a ray, and two variables you can use to manage recursion.  (Remember, adding in recursion is your job.)  It does some magic function call to find the first intersection of that ray with an object, and gives you an isect to work with.

material.cpp
When an intersection happens, you need to figure out what color the surface is at that point.  For that, you need a handy shading model, and someplace in the program that knows how to do it.  That’s what goes in this file.  This is the place where color gets calculated from material properties.  Right now it seems to only do one thing: return a diffuse color.

light.cpp
As part of shading, you generally need to look at light sources.  This is the code that knows how to handle them.  One of those handy “YOUR CODE HERE” flags seems to be sitting in this file, in a section dealing with attenuation.

read.cpp
Okay, after looking this all over you decide life is too simple, and you’re ready to add extra features, like spotlights for instance.  How do you work them in to the scene graph?  That’s where this file comes in.  As a .ray file is opened, it is parsed into a set of objects, and then each object gets processed in turn into an item in the scene graph.  Additions to the file format would start in the processObject() function in this file.

controls.cpp
Finally, as you add more and more features to Trace, you will probably want to turn some of them off, or control their values, without having to edit and recompile every time.  The functions in controls.cpp interface with Tcl/Tk to allow you to modify the GUI.

Important Data Structures

For the most part I’ll leave you to explore the data structures in those files on your own.  But to get a good headstart, here are some of the pieces you will need to work with:

RayGlobals:

This is a global data structure that contains a few controlling constants.  Any arbitrary values that you want to be able to change easily and see how it affects your image can be added here.  Look in ray.{h,cpp} for this.

Inside class ray:

In general, a ray is a self-contained object with a position and direction.  You can call getPosition and getDirection to get those vectors as you need.  One additional useful method is “at” which calculates the linear formula [P + t*D] and returns a new point.

Inside class isect:

const SceneObject *obj;
A pointer to the object intersected, in case you need to access the object.

double t;
This is the linear value from where the ray intersected the object.  In other words, if you wrote out the ray formula as [P + t*D] where P is the position of the ray and D is the direction, this t is the t in the formula.  You can use it to find the point in 3D space where the intersection took place.

vec3 N;
This is the surface normal where the intersection happened.  If you were standing on the object surface where the ray intersected, this is the direction your head points.

const Material &getMaterial() const;
And finally, this method gets the material properties of the surface at the intersection.  It’s just a time-saver, using the intersection’s own material pointer if it’s defined, or getting the object material if not.

Inside class material:

vec3 ke;
Emmisive property

vec3 ka;
Ambient property

vec3 ks;
Specular property

vec3 kd;
Diffuse property

vec3 kt;
Transmissive property

double shininess;
The shininess exponent when calculating specular highlights

double index;
Index of refraction for use in forming transmitted rays.

RayTracing Call Path

The true start of the raytracing call structure lies buried in two different files – main.cpp for the command-line version of the program and winmain.cpp for the windows version.  Your TA would most ardently recommend not changing these files unless you are really convinced you have a good reason to do so.

Despite the two possible starting places, the driving engine will end up making a call for every pixel in the image to trace() in trace.cpp.  This does some small set-up of vectors then makes a call to traceRay() in the same file.  And thus tracing has begun.

It’s important to emphasize the difference between the two functions.  trace() is responsible for finding the color of a particular pixel.  traceRay() is responsible for figuring out what color is seen by some arbitrary ray cast through the image.  As far as trace() is concerned, there are only pixels and pixel colors, there is no such thing as geometry or reflections or anything.  And as far as traceRay() is concerned, it’s just following a single ray from some position in space and seeing how it interacts with geometry.

From traceRay() the process can go in different directions.  For the simple ray-caster we gave you, the ray that was passed in is intersected against the geometry, the material properties of the intersection are retrieved, and shadeLocal() on that material class calculates a color.  Your version will probably use these same methods, just filling them in and making them a little more complex.

Miscellaneous Advice:

Some other pointers to get you moving:

When you are viewing scenes rendered with your solution, the scenes may appear washed out. Try scaling the factors in your code until the ray traced image looks roughly similar to the output of the sample solution.

For (semi-)transparent surfaces, you should probably multiply the diffuse and ambient terms by (1-kt). Otherwise, the diffuse and transmitted rays will add up and the surface will become washed out.

Arbitrary indices of refraction is pretty much done for you, all you have to do is take advantage of the data in the isect class.  A good value to use for testing things is 1.5, roughly the IOR of diamond.  Glass and water are around 1.3-ish.

For ns in the phong formula, use shininess*128 (where shininess is the scene's shininess output between 0 and 1.)

For attenuation of light sources, use the attenuation equation presented in class with a0 = 0.25, a1 = 0.1 and a2 = 0.01. You can try fiddling with these parameters. They're like physical constants, only in some alternate universe that obeys Phong's model. Change the constants and light behaves differently (and maybe better).

Note that secondary rays (reflected and transmitted) should not be attenuated.

It might be a good idea to have your project looked over by a TA before starting to add bells and whistles.

Don't feel like you have more work to do just because you haven't used all the fields provided in all the data structures. They potentially store more information than you need.

Part 2: Survey of STL

The Trace project is written in very highly structured C++ and takes advantage of the whole object-oriented paradigm.  While this makes it very versatile, it also means it may be significantly different than most of the other C++ code you have seen.  Becoming familiar with the class hierarchy is not particularly difficult, but one item that you may find confusing if you’ve never dealt with it before is the Standard Template Library, or STL.

The STL is a very large collection of templated C++ classes that implement a large number of data structures and algorithms.  Here, we have used the STL to keep track of several data items, including a list of light sources – something you will need to use.  As such, this is a very brief description of how to use the STL list structure.

Access to the STL's container classes, like list, is in general managed through objects called iterators. These sort of work like smart pointers.

If I defined this:

class foo_c { /* some stuff */ };
list<foo_c> foolist;

It makes a STL list of class foo_c. It also defines an iterator type called "list<foo_c>::iterator". Normally, to make typing easier on yourself, you would put a type-def on the iterator.

class foo_c { /* some stuff */ };
list<foo_c> foolist;
typedef list<foo_c>::iterator fooiter;

Now, when I'm ready to add stuff to that list, I use "push_front" to add items to the beginning.

foo_c myFoo;
/* do what you want to myFoo */
foolist.push_front( myFoo );

And when I want to access the list items, I iterate through them like this:

fooiter iter1;
for( iter1 = foo.begin(); iter1 != foo.end(); ++iter1 ) {
  // At this point, *iter1 is the current list item, just
  // as if iter1 were a pointer.
  cout << *iter1;
  *iter1 = something;
}

And finally, it's easy to delete an item from the list too. If you have an iterator pointing to the item you want to get rid of, you can call this:

erase( iter2 );

That's in general, how any of the storage classes work, whether a list or some other type.  Applied to the trace program, you would for instance use an iterator to loop through all the lights in the scene.  The only additional trick is that some of the data you might want to access is encapsulated with member functions to get at it.  For instance, the Scene::beginLights() and Scene::endLights() methods exist for no reason than to pass back iterators to the list of lights.

One final note: You should ALWAYS declare iterators as local variables in one function or another. Pass them into sub-functions as you need, but for good coding technique don't ever declare a pointer and dynamically allocate an iterator with operator "new." It's almost asking for memory leaks if you do, because of the way iterators get passed around elsewhere – using copious copy constructor calls. So just always make your iterators local to some function or block, and you'll be fine.

