
IMPRESSIONIST
HELP SESSION



IMPRESSIONIST

OUTLINE

▸ Skeleton Code


▸ OpenGL


▸ Qt


▸ Debugging Hints


▸ Project requirements

▸ Brushes


▸ Alpha Blending


▸ Filter Kernel


▸ Mean Bilateral Filter


▸ Git Tutorial



IMPRESSIONIST

GETTING STARTED

▸ Clone the Impressionist skeleton code

▸ git clone git@gitlab.cs.washington.edu:csep557-24au-projects/

impressionist.git impressionist


▸ Point the remote at your personal project branch (more instructions at end)


▸ Install Qt Creator (if working on your own machine)

▸ www.qt.io/download > “Student or Teacher” > “Apply for Educational License” 


▸ Follow email link > “Qt for Developers”


▸ On Windows, first install the MSVC C++ compiler


▸ Installing Visual Studio (not Visual Studio Code) with C++ support enabled 
will do this


▸ In Qt Creator, “Open Existing Project” and open Impressionist.pro

http://www.qt.io/download


IMPRESSIONIST

GETTING STARTED

▸ Make sure to select 
development tools


▸ Open the project file 
impressionist.pro


▸ Configure Project


▸ Build the project (click the 
build icon)


▸ Run the program (green 
play button)



SKELETON CODE

SKELETON CODE



SKELETON CODE

mainwindow

The data/information about 
brushes, filters, and paint views

forms

Dialog boxes/forms for brushes 
filters, and paint views, etc.

lineBrushscatteredPointBrush circleBrushpointBrush scatteredLineBrushscatteredCircleBrush

paintview filter brush



SKELETON CODE

FILES

▸ mainwindow.[h|cpp]


▸ Handles all of the document related items like loading and saving, selecting brushes, and 
applying filters


▸ forms/


▸ Various UI components (the main window, brush & kernel dialog boxes, etc…)


▸ paintview.[h|cpp]


▸ Handles the original image side of the window (left side) and the drawing side of the window 
the user paints on (right side)


▸ brush.[h|cpp]


▸ The virtual class all brushes are derived from


▸ pointbrush.[h|cpp]


▸ An example brush that draws points



OPENGL

OPENGL

▸ Good(ish) environment for PC 2d/3d graphics applications


▸ Extremely well documented… well not really!

▸ Lots of beginner tutorials online (like learnopengl.com)


▸ www.khronos.org/opengl/wiki/


▸ Keys to understanding how OpenGL works


▸ But sometimes has unfinished pages


▸ We will be using it throughout the quarter


▸ This project uses the basics of OpenGL

▸ Although you’re welcome to learn more on your own (and we encourage 

this), the focus of this project is on 2d image manipulation

http://learnopengl.com
http://www.khronos.org/opengl/wiki/


OPENGL

HOW OPENGL WORKS

▸ OpenGL draws primitives - lines, vertices, or polygons - 
subject to many selectable modes


▸ It can be modeled as a state machine

▸ Once a mode is set, it stays there until turned off


▸ It is procedural - commands are executed in the order they 
are specified

Bad!



OPENGL

DRAWING A POLYGON
// Let’s draw a filled triangle!

// first, set your color

glm::vec4 color;

color.r = red;

color.g = green;

color.b = blue;

// set the vertices

std::vector<Glfloat> vertex = {


Ax, Ay,

Bx, By,

Cx, Cy


};

// send the vertex data to the GPU buffer

glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vertex.size(), 


vertex.data(), GL_STREAM_DRAW);

// Draw polygon

glDrawArrays(GL_TRIANGLES, 0, 3);

Bad!



OPENGL

DRAWING A POLYGON

▸ A lot going on behind the scenes


▸ There is a lot of prep code needed to draw

▸ We need to create a vertex array object that records all the 

state needed to draw a brush, bound every time we draw

▸ We need to create a vertex buffer object to hold the 

vertex positions and specify the format of the vertex 
data(GL_LINES, GL_TRIANGLES, GL_QUADS, … and many 
more!)


▸ We need to create a shader program (we did this for you)

Bad!



QT

QT

▸ Enables developers to develop applications with intuitive user interfaces for 
multiple targets, faster than from scratch


▸ It’s a cross-platform GUI toolkit


▸ We needed a windowing toolkit to handle window/rendering context 
creation for OpenGL since we don’t want to do that ourselves


▸ FLTK (what we used to use) is lightweight, but has sparse features that don’t 
play as well with nicer, newer hardware


▸ Event-Driven (via callbacks as slot and signal pairings)


▸ QtCreator IDE - installed with Qt


▸ mainwindow.cpp has several widget examples

Bad!



QT

Bad!



QT

DEBUGGING
▸ Debugging in Qt


▸ Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).


▸ Print out debugging info


▸ #include <QDebug>


▸ Use qDebug() when you want to display information


▸ qDebug() << “debugging info: “ << debugInfo;


▸ Rebuild the project


▸ Clean → Make → Build the Project


▸ Debugging OpenGL


▸ It might help to check for errors after each call. When it seems like nothing is happening, OpenGL is often 
returning an error message somewhere along the line.


▸ #include <glinclude.h>


▸ Use GLCheckError();

Bad!



REQUIREMENTS



REQUIREMENTS

BRUSHES

▸ Let’s make a triangle brush! (this will of course NOT count 
towards extra credit)


▸ Make a copy of pointbrush.[h|cpp] and rename to 
trianglebrush.[h|cpp]

▸ Right-click pointbrush.h/cpp -> Duplicate File…


▸ Right-click pointbrush_copy.[h|cpp] -> Rename…


▸ Rename to “trianglebrush.[h|cpp]”


▸ They should show up as part of the impressionist project


▸ Go through the trianglebrush.[h|cpp] code and change 
all pointbrush labels to trianglebrush labels



REQUIREMENTS

BRUSHES, CONT’D

▸ Go to brush.h and add Triangle to the Brushes enum 
class


▸ Open forms/brushdialog.cpp, add “brushes/
trianglebrush.h” to the includes. Scroll down a bit, and 
add the triangle brush to the selectable brushes.



REQUIREMENTS

BRUSHES, CONT’D

▸ Modify the BrushMove method to draw a triangle instead of a point in 
trianglebrush.cpp

int size = GetSize();

std::vector<Glfloat> vertex = {


pos.x - (size * 0.5f), pos.y + (size * 0.5f),

pos.x + (size * 0.5f), pos.y + (size * 0.5f),

pos.x, pos.y - (size * 0.5f)


};


glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vertex.size(), 

vertex.data(), GL_STREAM_DRAW);


glDrawArrays(GL_TRIANGLES, 0, 3);



REQUIREMENTS

EDGE DETECTION & GRADIENTS

▸ The gradient is a vector that points in the direction of maximum 
increase of f


▸ Use the sobel operator

rf = @f
@x x̂+ @f

@y ŷ

✓ = atan2
⇣

@f
@y ,

@f
@x

⌘



REQUIREMENTS

ALPHA BLENDING

▸ A weighted average of two colors:


▸ Suppose


▸ Then

Fnew = ↵C + (1� ↵)Fold

↵ = 0.5 C =

2

664

255
255
255
255

3

775 Fold =

2

664

255
0
0
128

3

775

Fnew = 0.5

2

664

255
255
255
255

3

775+ (1� 0.5)

2

664

255
0
0
128

3

775 =

2

664

128
128
128
128

3

775+

2

664

128
0
0
64

3

775 =

2

664

255
128
128
192

3

775?



REQUIREMENTS

ALPHA BLENDING

▸ A weighted average of two colors:


▸ Suppose


▸ Then

Fnew = ↵C + (1� ↵)Fold

↵ = 0.5 C =

2

664

255
255
255
255

3

775 Fold =

2

664

255
0
0
128

3

775

Fnew = 0.5

2

664

255
255
255
255

3

775+ (1� 0.5)

2

664

255
0
0
128

3

775 =

2

664

128
128
128
128

3

775+

2

664

128
0
0
64

3

775 =

2

664

255
128
128
192

3

775



REQUIREMENTS

FILTERS

▸ Remember how filter kernels are applied to an image


▸ Look at the sample solution. How does it apply a filter?


▸ What could go wrong?


▸ What cases do you need to handle?


▸ We will be looking closely at your filter kernel



REQUIREMENTS

USE GIMP/PHOTOSHOP TO SEE FILTERS IN ACTION



REQUIREMENTS

3X3 MEAN BOX FILTER



ARTIFACTS



ARTIFACTS

EVERY PROJECT HAS AN ARTIFACT

▸ Individual (except for final project)


▸ Due after the project


▸ Showcase the tool you built


▸ A good place to demonstrate any bells 
and whistles you implemented


▸ In-class voting to determine the best


▸ Winner gets extra credit!



GIT TUTORIAL



GIT TUTORIAL

RESOURCES
▸ Basics for this course:


▸ https://courses.cs.washington.edu/courses/csep557/24au/src/
help.php


▸ Official documentation:


▸ https://git-scm.com/book/en/v2


▸ git —help <command>

https://courses.cs.washington.edu/courses/csep557/24au/src/help.php
https://courses.cs.washington.edu/courses/csep557/24au/src/help.php
https://git-scm.com/book/en/v2


GIT TUTORIAL

WORKFLOW
▸ Starting


▸ Navigate to the directory you want to work in and run 
$ git clone git@gitlab.cs.washington.edu:csep557-24au-
projects/impressionist.git impressionist 


▸ This clones your repository into a working directory named “impressionist”


▸ Follow Instructions for “pushing an existing repository”

$ cd impressionist

$ git remote rename origin old-origin

$ git remote add origin 
git@gitlab.cs.washington.edu:csep557-24au-projects/
students-distribution/YOUR_NAME-projects.git

$ git push --set-upstream origin --all

$ git push --set-upstream origin --tags



GIT TUTORIAL

WORKFLOW
▸ Working 


▸ You will want to periodically check your code in, either to avoid disaster or to 
rollback broken code to an earlier working version. Run: 
 $ git add -all 
 $ git commit -m “added a triangle brush” 
 $ git push


▸ If you made any changes remotely, run 
 $ git pull



GIT TUTORIAL

SUBMITTING
▸ Build your executable in Release Mode and test it


▸ Be sure to have everything properly committed and pushed to your 
Gitlab repository first 
 $ git status 
 On branch master? 
 Your branch is up-to-date with “origin/master”? 
 Nothing to commit, working directory clean?


▸ Tag it


▸ $ git tag SUBMIT 
$ git push --tags


▸ Clone your tagged repo into a SEPARATE directory and test running the program



GOOD LUCK
THE END


