Affine transformations

Reading

Optional reading:

- Angel and Shreiner: 3.1, 3.7-3.11
- Marschner and Shirley: 2.3, 2.4.1-2.4.4,
 6.1.1-6.1.4, 6.2.1, 6.3

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, *Mathematical Elements for Computer Graphics*, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

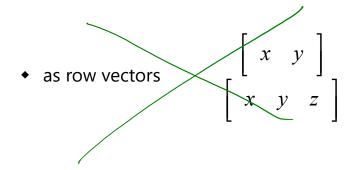
Geometric transformations will map points in one space to points in another: (x', y', z') = f(x, y, z).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

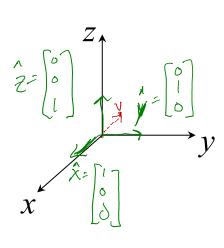
We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

We can represent a **point**, $\mathbf{p} = (x, y)$, in the plane or $\mathbf{p} = (x, y, z)$ in 3D space:



Canonical axes



right hand rule
$$v = x\hat{x} + y\hat{y} + 2\hat{z}$$

$$= x\begin{bmatrix} 1 \\ 9 \end{bmatrix} + y\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} x \\ 2 \end{bmatrix}$$

Vector length and dot products

$$u = \begin{bmatrix} v_{x} \\ u_{y} \\ u_{z} \end{bmatrix} \quad v = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}$$

$$u = \begin{bmatrix} v_{x} \\ u_{y} \\ u_{z} \end{bmatrix} \quad v = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} \qquad ||v|| = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} \qquad ||v|| = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} \qquad ||v|| = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$|V||$$

$$|V||$$

$$|V||$$

$$|V|| = |V|| |V|| |V|| |V|| |V|| = |V|| |V||$$

Representation, cont.

We can represent a **2-D transformation** M by a matrix

a **2-D transformation**
$$M$$
 by a
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^{-1}(AB) = I$$

 $(AB)^{-1}AB = I$
 $(AB)^{-1}A = B^{-1}$
 $(AB)^{-1} = B^{-1}A^{-1}$

If **p** is a column vector,
$$M$$
 goes on the left: $\mathbf{p'} = M\mathbf{p}$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + bx \\ cx + dx \end{bmatrix}$$

If **p** is a row vector, M^{T} goes on the right:

$$\mathbf{p'} = \mathbf{p}M^{T}$$

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} x + by & cx + dy \end{bmatrix}$$

We will use **column vectors**.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

So:

$$x' = ax + by$$
$$y' = cx + dy$$

We will develop some intimacy with the elements a, b, c, d...

Identity

Suppose we choose a = d = 1, b = c = 0:

• Gives the **identity** matrix:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} \mathsf{Y} \\ \mathsf{Y} \end{array}\right]$$

Doesn't move the points at all

Scaling

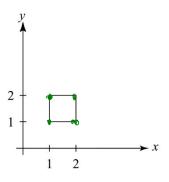
Suppose we set b = c = 0, but let a and d take on any positive value:

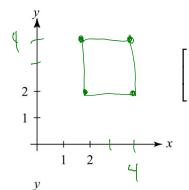
• Gives a **scaling** matrix:

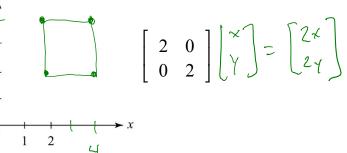
$$\left[\begin{array}{cc} a & 0 \\ 0 & d \end{array}\right]$$

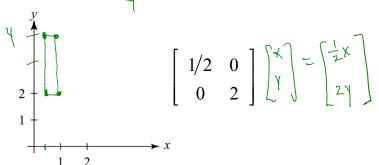
• Provides differential (non-uniform) scaling in x and y: x' = ax

$$y' = dy$$









Suppose we keep b = c = 0, but let either a or d go negative.

Examples:

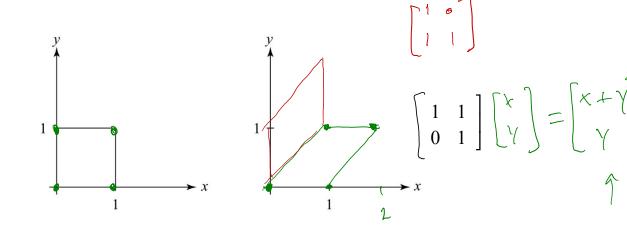
Now let's leave a = d = 1 and experiment with $b \dots$

The matrix

$$\begin{bmatrix} 1 & \textcircled{b} \\ 0 & 1 \end{bmatrix}$$

gives:

$$x' = x + by$$
$$y' = y$$



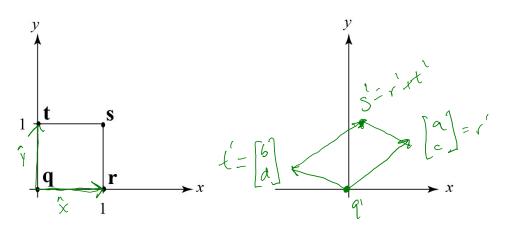
Effect on unit square

Let's see how a general 2 x 2 transformation M affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \mathbf{q} & \mathbf{r} & \mathbf{s} & \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{q'} & \mathbf{r'} & \mathbf{s'} & \mathbf{t'} \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$



Effect on unit square, cont.

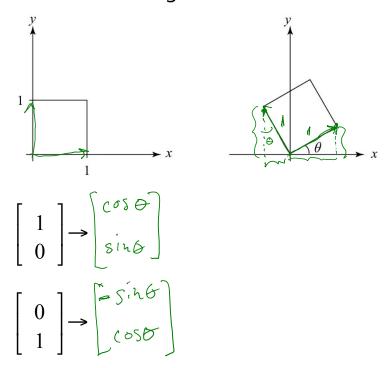
Observe:

- ullet Origin invariant under M
- ◆ *M* can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and d give x- and y-scaling
- ◆ *b* and *c* give *x* and *y*-shearing

Rotation

Soh cah toa

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":



Thus,

$$M = R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

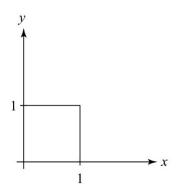
Idea is to loft the problem up into 3-space, adding a third component to every point:

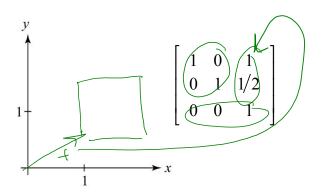
$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

Adding the third "w" component puts us in **homogenous coordinates**.

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x & t_y \\ y & t_y \\ 1 \end{bmatrix}$$





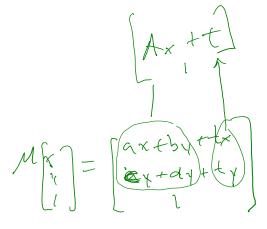
Anatomy of an affine matrix

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations

In matrix form, 2D affine transformations always look like this:
$$t_x$$

$$M = \begin{bmatrix} d & t \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} d & t \\ 0 & 0 & 1 \end{bmatrix}$$



2D affine transformations always have a bottom row of [0 0 1].

An "affine point" is a "linear point" with an

added *w*-coordinate which is aways 1:
$$\mathbf{p}_{aff} = \begin{bmatrix} \mathbf{p}_{lin} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Applying an affine transformation gives another affine point: $M\mathbf{p}_{aff} = \begin{bmatrix} A\mathbf{p}_{lin} + \mathbf{t} \\ 1 \end{bmatrix}$

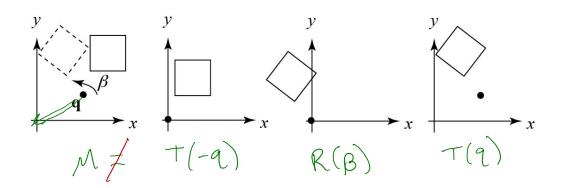
Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

 $R(Q) = \begin{cases} \cos^{-5} \cos 0 \\ \sin \cos 0 \end{cases}$

With homogeneous coordinates, you can specify a rotation by β , about any point $\mathbf{q} = [q_{\mathbf{X}} \ q_{\mathbf{Y}}]^{\mathsf{T}}$ with a matrix.

Let's do this with rotation and translation matrices of the form $R(\theta)$ and T(t), respectively.



- 1. Translate q to origin
- M=T(9) R(B)T(-9)

- Rotate
- Translate back

Points and vectors

 $= \begin{bmatrix} B_{Y} - A_{X} \\ B_{Y} - A_{Y} \end{bmatrix} = V$

Vectors have an additional coordinate of w = 0. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

These representations reflect some of the rules of affine operations on points and vectors:

One useful combination of affine operations is: $P(t) = P_o + t\mathbf{u}$ $P(t) = P_o + t\mathbf{u}$

$$P(t) = P_o + t\mathbf{u}$$

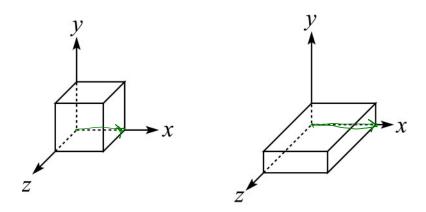
Q: What does this describe?

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

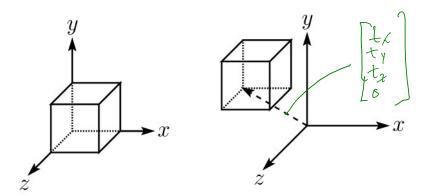
For example, scaling:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



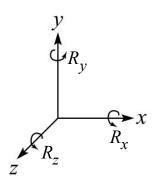
Rotation in 3D (cont'd)

These are the rotations about the canonical

$$\begin{array}{lll}
\mathsf{axes:} \\
R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
R_x(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
R_x(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
R_x(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
R_x(\beta) = \begin{bmatrix} \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta & \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta & \cos \beta & 0 & \cos \beta & 0 \\ R_x(\beta) & \cos \beta \\ R_x(\beta) & \cos \beta & \cos \beta$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



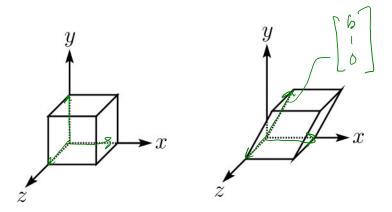
Use right hand

A general rotation can be specified in terms of a product of these three matrices. How else might your spedify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} b \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



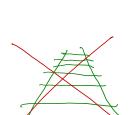
We call this a shear with respect to the x-z plane.

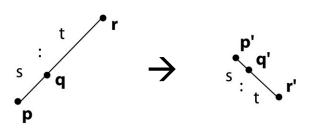
Properties of affine transformations

Here are some useful properties of affine transformations:



- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)





ratio =
$$\frac{\|\mathbf{pq}\|}{\|\mathbf{qr}\|} = \frac{s}{t} = \frac{\|\mathbf{p'q'}\|}{\|\mathbf{q'r'}\|}$$

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- ◆ What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.