2™ :
'.',-‘ Y Gt
R

Ray Tracing

One of the basic tasks of computer graphics is rendering three-dimensional ob-
jects: taking a scene, or model, composed of many geometric objects arranged
in 3D space and producing a 2D image that shows the objects as viewed from
a particular viewpoint. It is the same operation that has been done for centuries
by architects and engineers creating drawings to communicate their designs to
others.

Fundamentally, rendering is a process that takes as its input a set of objects and
produces as its output an array of pixels. One way or another, rendering involves
considering how each object contributes to each pixel: it can be organized in two
general ways. In object-order rendering, each object is considered in turn, and
for each object all the pixels that it influences are found and updated. In image-
order rendering, each pixel is considered in turn, and for each pixel all the objects
that influence it are found and the pixel value is computed. You can think of
the difference in terms of the nesting of loops: in image-order rendering the “for
each pixel™ loop is on the outside, whereas in object-order rendering the “*for each
object™ loop is on the outside.

Image-order and object-order rendering approaches can compute exactly the
same images, but they lend themselves to computing different kinds of effects
and have quite different performance characteristics. We'll explore the compara-
tive strengths of the approaches in Chapter 8 after we have discussed them both,
but, broadly speaking, image-order rendering is simpler to get working and more
flexible in the effects that can be produced, and usually (though not always) takes
much more execution time to produce a comparable image.

69

If the output is a vector
image rather than a raster
image, rendering doesn’t
have to involve pixels, but
we'll assume raster images
in this book.

In a ray tracer, it is easy |
to compute accurate shad-
ows and reflections, which
are awkward in the object-




70 4. Ray Tracing

Ray

Figure 4.1. The ray is “traced” into the scene and the first object hit is the one seen through the
pixel. In this case, the triangle 7> is returned.

Ray tracing is an image-order algorithm for making renderings of 3D scenes,
and we’ll consider it first because it’s possible to get a ray tracer working with-
out developing any of the mathematical machinery that’s used for object-order
rendering.

4.1 The Basic Ray-Tracing Algorithm

A ray tracer works by computing one pixel at a time, and for each pixel the basic
task is to find the object that is seen at that pixel’s position in the image. Each
pixel “looks™ in a different direction, and any object that is seen by a pixel must
intersect the viewing ray, a line that emanates from the viewpoint in the direction
that pixel is looking. The particular object we want is the one that intersects
the viewing ray nearest the camera, since it blocks the view of any other objects
behind it. Once that object is found, a shading computation uses the intersection
point, surface normal, and other information (depending on the desired type of
rendering) to determine the color of the pixel. This is shown in Figure 4.1, where
the ray intersects two triangles, but only the first triangle hit, 7%, is shaded.
A basic ray tracer therefore has three parts:

1. ray generation, which computes the origin and direction of each pixel’s
viewing ray based on the camera geometry:

2. ray intersection, which finds the closest object intersecting the viewing ray;

3. shading, which computes the pixel color based on the results of ray inter-

section.

The structure of the basic ray tracing program is:



4.2. Perspective 71

for cach pixel do
compute viewing ray
find first object hit by ray and its surface normal n
set pixel color to value computed from hit point, light, and n

Th“ chapter covers basic methods for ray generation, ray intersection, and shad-
ing, that are sufficient for implementing a simple demonstration ray tracer. For a
really useful system, more efficient ray intersection techniques from Chapter 12
need to be added, and the real potential of a ray tracer will be seen with the more

ac‘lvanccd shading methods from Chapter 10 and the additional rendering tech-
niques from Chapter 13.

4.2 Perspective

The problem of representing a 3D object or scene with a 2D drawing or paint-
ing was studied by artists hundreds of years before computers. Photographs also
represent 3D scenes with 2D images. While there are many unconventional ways
to make images, from cubist painting to fisheye lenses (Figure 4.2) to peripheral
cameras, the standard approach for both art and photography, as well as computer
graphics, is linear perspective, in which 3D objects are projected onto an image
plane in such a way that straight lines in the scene become straight lines in the
image.

The simplest type of projection is parallel projection, in which 3D points are
mapped to 2D by moving them along a projection direction until they hit the
image plane (Figures 4.3-4.4). The view that is produced is determined by the
choice of projection direction and image plane. If the image plane is perpendicular

Orthographic

Axis-aligned
orthographic

Figure 4.3.  When projection lines are parallel and perpendicular to the image plane, the resulting
views are called orthographic.

Figure 4.2. An image taken
with a fisheye lens is not a lin-
ear perspective image. Photo
courtesy Philip Greenspun.



72 4. Ray Tracing

| .

Some books reserve “or-
thographic™ for projection
directions that are parallel
to the coordinate axes.

Perspective Oblique

Figure 4.4. A parallel projection that has the image plane at an angle to the projection direction is
called oblique (right). In perspective projection, the projection lines all pass through the viewpoint,
rather than being parallel (left). The illustrated perspective view is non-oblique because a projection
line drawn through the center of the image would be perpendicular to the image plane.

to the view direction, the projection is called orthographic; otherwise it is called
obligue.

Parallel projections are often used for mechanical and architectural drawings
because they keep parallel lines parallel and they preserve the size and shape of
planar objects that are parallel to the image plane.

The advantages of parallel projection are also its limitations. In our everyday
experience (and even more so in photographs) objects look smaller as they get
farther away, and as a result parallel lines receding into the distance do not ap-
pear parallel. This is because eyes and cameras don’t collect light from a single
viewing direction; they collect light that passes through a particular viewpoint.
As has been recognized by artists since the Renaissance. we can produce natural-
looking views using perspective projection: we simply project along lines that
pass through a single point, the viewpoint, rather than along parallel lines (Fig-

Vanishing point Horizon

Figure 4.5. In three-point perspective, an artist picks “vanishing points™ where parallel lines meet
Parallel horizontal lines will meet at a point on the horizon. Every set of parallel lines has its own

vanishing points. These rules are followed automatically if we implement perspective based on the
correct geometric principles.



4.3. Computing Viewing Rays 73

ure 4.4). In this way. objects farther from the viewpoint naturally become smaller
when they are projected. A perspective view is determined by the choice of view-
point (rather than projection direction) and image plane. As with parallel views,
there are oblique and non-oblique perspective views; the distinction is made based
on the projection direction at the center of the image.

You may have learned about the artistic conventions of three-point perspec-
tive. a system for manually constructing perspective views (Figure 4.5). A sur-
prising fact about perspective is that all the rules of perspective drawing will be
followed automatically if we follow the simple mathematical rule underlying per-
spective: objects are projected directly toward the eye, and they are drawn where
they meet a view plane in front of the eye.

4.3 Computing Viewing Rays

From the previous section, the basic tools of ray generation are the viewpoint (or
view direction, for parallel views) and the image plane. There are many ways to
work out the details of camera geometry; in this section we explain one based
on orthonormal bases that supports normal and oblique parallel and orthographic
views.

In order to generate rays, we first need a mathematical representation for a ray.
A ray is really just an origin point and a propagation direction; a 3D parametric
line is ideal for this. As discussed in Section 2.5.7, the 3D parametric line from
the eye e to a point s on the image plane (Figure 4.6) is given by

p(t) =e+t(s—e).

This should be interpreted as, “we advance from e along the vector (s — e) a
fractional distance ¢ to find the point p.” So given ¢, we can determine a point p.
The point e is the ray’s origin, and s — e is the ray’s direction.

Note that p(0) = e, and p(1) = s, and more generally, if 0 < ¢; < to, then
p(t1) is closer to the eye than p(t,). Also. if t < 0, then p(t) is “behind” the eye.
These facts will be useful when we search for the closest object hit by the ray that
is not behind the eye.

To compute a viewing ray, we need to know e (which is given) and s. Finding
s may seem difficult, but it is actually straightforward if we look at the problem
in the right coordinate system.

All of our ray-generation methods start from an orthonormal coordinate frame
known as the camera frame, which we’ll denote by e, for the eye point, or view-
point, and u, v, and w for the three basis vectors, organized with u pointing right-
ward (from the camera’s view), v pointing upward, and w pointing backward, so

Figure 4.6.  The ray from
the eye to a point on the image
plane.

Caution: we are overload-
ing the variable 7, which is
the ray parameter and also
the v-coordinate of the top
edge of the image.




Figure 4.8. The vectors
of the camera frame, together
with the view direction and up
direction. The w vector is op-
posite the view direction, and
the v vector is coplanar with w
and the up vector.

Since v and w have to be
perpendicular, the up vec-
tor and v are not generally
the same. But setting the up
vector to point straight up-
ward in the scene will ori-
ent the camera in the way
we would think of as “up-
right.”

It might seem logical that
orthographic viewing rays
should start from infinitely
far away, but then it would
not be possible to make or-
thographic views of an ob-
ject inside a room, for in-
stance.

Many systems assume that
| =~ rand b =~1so that a

width and a height suffice.

74 4. Ray Tracing

® | @ | e

(@] @] (@)

Q|00 | e
Screen

F.igure 4.7. The sample points on the screen are mapped to a similar array on the 3D window. A
viewing ray is sent to each of these locations.

that {u, v, w} forms a right-handed coordinate system. The most common way
to construct the camera frame is from the viewpoint, which becomes e, the view
direction, which is —w, and the up vector, which is used to construct a basis that
has v and w in the plane defined by the view direction and the up direction, using

the process for constructing an orthonormal basis from two vectors described in
Section 2.4.7.

4.3.1 Orthographic Views

For an orthographic view, all the rays will have the direction —
a parallel view doesn’t have a viewpoint per se, we can still u
camera frame to define the plane where the rays start, so
objects to be behind the camera.

The viewing rays should start on the plane defined b
vectors u and v; the only remaining information re
image is supposed to be. We’ll define the image
for the four sides of the image: [ and r
edges of the image, as measured from e along the u direction: and b and ¢ are the
positions of the bottom and top edges of the image, as measur‘ed -
v direction. Usually l < 0 < randb < ( < ¢ (See Figure 4.9 )

In Section 3.2 we discussed pixel coordinates n &
with 1, x n, pixels into a rectangle of size (r =1

w. Even though
se the origin of the
that it’s possible for

Y the point e and the
quired is where on the plane the
dimensions with four pumbers,
are the positions of the left and right

from e along the

an image. To fit an image

: ) Sl TR X s cofs
spaced a distance (r — 1) /n, apart horizontally and (t _(b)/,, kithe RBs

with a half-pixel space around the edge to center the pixel grid'y 2?part vert'lcall);
. : W
rectangle. This means that the pixel at position (i, ) in e ‘Wlt'hm the 1md;
position aster image has the
u=1+(r -1+ 0.5)/n,,

v=>b+ (t — b)(j+0-v'—))/uu, (4.1)



4.3. Computing Viewing Rays L

- S

b
P.‘“' allel projection Perspective projection
same direction, different origins same origin, different directions

Figure 4.9. Ray generation using the camera frame. Left: In an orthographic view, the rays start
at the pixels’ locations on the image plane, and all share the same direction, which is equal to the
view direction. Right: In a perspective view, the rays start at the viewpoint, and each ray’s direction is
defined by the line through the viewpoint, e, and the pixel’s location on the image plane.

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u, v}.

In an orthographic view, we can simply use the pixel’s image-plane position
as the ray’s starting point, and we already know the ray’s direction is the view
direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction <~ —w
ray.origin<—e+uu+ovv

It’s very simple to make an oblique parallel view: just allow the image plane
normal w to be specified separately from the view direction d. The procedure is

then exactly the same, but with d substituted for —w. Of course w is still used to
construct u and v.

4.3.2 Perspective Views

For a perspective view, all the rays have the same origin, at the viewpoint; it
is the directions that are different for each pixel. The image plane is no longer
positioned at e, but rather some distance d in front of e; this distance is the image
plane distance, often loosely called the focal length, because choosing d plays the
same role as choosing focal length in a real camera. The direction of each ray is
defined by the viewpoint and the position of the pixel on the image plane. This
situation is illustrated in Figure 4.9, and the resulting procedure is similar to the

With / and r both specified,
there is redundancy: mov-
ing the viewpoint a bit to
the right and correspond-
ingly decreasing [ and r
will not change the view
(and similarly on the v-
axis).




76 4. Ray Tracing

orthographic one:

compute © and v using (4.1)
ray.direction <~ —dw +uu+vv
ray.origin <— e

As with parallel projection, oblique perspective views can be achieved by spec-
ifying the image plane normal separately from the projection direction, then re-
placing —d w with dd in the expression for the ray direction.

4.4 Ray-Object Intersection

Once we’ve generated a ray e + td, we next need to find the first intersection with
any object where ¢ > 0. In practice, it turns out to be useful to solve a slightly
more general problem: find the first intersection between the ray and a surface that
occurs at a t in the interval [to,¢;]. The basic ray intersection is the case where
to = 0 and #; = +o00. We solve this problem for both spheres and triangles. In
the next section, multiple objects are discussed.

4.4.1 Ray-Sphere Intersection

Given a ray p(t) = e + td and an implicit surface f(p) = 0 (see Section 2.53),
we’d like to know where they intersect. Intersection points occur when points on

the ray satisfy the implicit equation, so the values of ¢ we seek are those that solve
the equation

f(p(#) =0 or f(e+td)=0.

A sphere with center ¢ = (zc, yc, zc) and radius R can be represented by the
implicit equation

(@ = 2e)* + (¥ — 4’ + (2~ 2.)2 = R2 = 0.
We can write this same equation in vector form:
(P-c):-(P-c)-R?=0.

Any point p that satisfies this equation is on the sphere. If we plug points on the
. . 4 (-]
ray p(t) = e + td into this equation, we get an equation in terms of ¢ that is

satisfied by the values of ¢ that yield points on the sphere:

(e+id—c)-(e+td—c)—[{":()_



4.4. Ray-Object Intersection il

Rearranging terms yields
(d-d)t* +2d- (e —c)t+ (e —c)- (e —c) — R? = 0.

Here, everything is known except the parameter £, so this is a classic quadratic
equation in ¢, meaning it has the form

ARt L=

The solution to this equation is discussed in Section 2.2. The term under the
square root sign in the quadratic solution, B2 — 4AC, is called the discriminant
and tells us how many real solutions there are. If the discriminant is negative,
its square root is imaginary and the line and sphere do not intersect. If the dis-
criminant is positive, there are two solutions: one solution where the ray enters
the sphere and one where it leaves. If the discriminant is zero, the ray grazes
the sphere, touching it at exactly one point. Plugging in the actual terms for the
sphere and canceling a factor of two, we get

—d-(e—c) :t\/ (e—c))"—(d-d)((e—=c)-(e—c)— R?)
5 (d-d) '

In an actual implementation, you should first check the value of the discriminant
before computing other terms. If the sphere is used only as a bounding object for
more complex objects, then we need only determine whether we hit it: checking
the discriminant suffices.

As discussed in Section 2.5.4, the normal vector at point p is given by the
gradient n = 2(p — c¢). The unit normal is (p — ¢)/R.

4.4.2 Ray-Triangle Intersection

There are many algorithms for computing ray-triangle intersections. We will
present the form that uses barycentric coordinates for the parametric plane con-
taining the triangle, because it requires no long-term storage other than the ver-
tices of the triangle (Snyder & Barr, 1987).

To intersect a ray with a parametric surface, we set up a system of equations
where the Cartesian coordinates all match:

Te + t2q ‘,.(U‘MI
Ye + tya = g(u,v) or, e+ td = f(u,v).

- t2 ;',,,_»-I



\Sjb

Figure 4.10.  The ray hits
the plane containing the trian-
gle at point p.

78 4. Ray Tracing

Here, we have three equations and three unknowns (¢, u, and v), so we can solve
numerically for the unknowns. If we are lucky, we can solve for them analytically.

In the case where the parametric surface is a parametric plane, the parametric
equation can be written in vector form as discussed in Section 2.7.2. If the vertices
of the triangle are a, b, and c, then the intersection will occur when

e+td=a+ f(b—a)+y(c—a), (4.2)

for some ¢, 3, and . The intersection p will be at e + td as shown in Figure 4.10.
Again, from Section 2.7.2, we know the intersection is inside the triangle if and
onlyif > 0,7 > 0,and 3 + v < 1. Otherwise, the ray has hit the plane outside
the triangle, so it misses the triangle. If there are no solutions, either the triangle
is degenerate or the ray is parallel to the plane containing the triangle.

To solve for ¢, 3, and 7 in Equation (4.2), we expand it from its vector form
into the three equations for the three coordinates:

ZTe +trqg = 24 + /j(l‘b = «7;(1) 2 A/'(-TC v Ia)-
Ye + tYd = Ya + BUb — Ya) + Y(Ye — Ya),
Ze +tzd = 2o + B2 — 24) + Y(2c — 24).

This can be rewritten as a standard linear system:

o b= wiLaile [iB Tq — Te
Ya =Y Ya —Ye Yd N S it Ve
ol IR 7o =2 2 t Za = %o

The fastest classic method to solve this 3 x 3 linear system is Cramer’s rule. This
gives us the solutions

Ya —Ye Ya—Ye Y4

/5 Za — Re Za — Z¢ 2d
|A

La —Th Tg—Te Xq
Ya— Yo Ya—Ye'! ¥Ya
Ra — %b Za — Ze 2d

Al

Bo =By Tai™ Bo Ba ~ e
Yo Ul o leim=ile | i¥ai 7= e

—— y AP ¥ e
“a ~b “Q “c “a ~e

Al




4.4. Ray-Object Intersection e

where the matrix A is
To =Ty To—Te T4
A= 1%~ Y—Y% ud
Za — 2p Ra — Z¢ Zd
and |A| denotes the determinant of A. The 3 x 3 determinants have common sub-
terms that can be exploited. Looking at the linear systems with dummy variables

a d g| [B i
b e h yllv= "k
C Ly t l

Cramer’s rule gives us

P j(ei = hf) + k(gf — di) + I(dh — eg)
M ’

~/

!

_i(ak — jb) + h(jc — al) + g(bl — kc)
M '

AL _ flak — jb) 4 e(jc — al) + d(bl — kc)
i ;

where
M = a(ei — hf)+ b(gf — di) + c(dh — eg).
We can reduce the number of operations by reusing numbers such as
“ei-minus-hf.”’
The algorithm for the ray-triangle intersection for which we need the linear so-
lution can have some conditions for early termination. Thus, the function should
look something like:

boolean raytri (ray r, vector3 a, vector3 b, vector3 c,
interval [to, t1])

compute ¢

if (t < tg) or (t > t,) then
return false

compute 7y

if (y < 0)or (y > 1) then
return false

compute /3

if (3 <0)or (8 >1—-) then
return false

return true



80 4. Ray Tracing

4.4.3 Ray-Polygon Intersection

Given a planar polygon with m vertices p, through p,, and surface normal n,
we first compute the intersection points between the ray e + td and the plane
containing the polygon with implicit equation
(p—py) n=0.
We do this by setting p = e + td and solving for ¢ to get
(P, —e):'n
dn

This allows us to compute p. If p is inside the polygon, then the ray hits it;
otherwise, it does not.

t =

We can answer the question of whether p is inside the polygon by projecting
the point and polygon vertices to the zy plane and answering it there. The easiest
way to do this is to send any 2D ray out from p and to count the number of inter-
sections between that ray and the boundary of the polygon (Sutherland, Sproull,
& Schumacker, 1974; Glassner, 1989). If the number of intersections is odd, then
the point is inside the polygon; otherwise it is not. This is true because a ray that
goes in must go out, thus creating a pair of intersections. Only a ray that starts

inside will not create such a pair. To make computation simple, the 2D ray may
as well propagate along the z-axis:

4y T 1
3=+
It is straightforward to compute the intersection of that ray with the edges such as
(1,Y1,22,y2) for s € (0, 00).
A problem arises, however, for polygons whose projection into the xy plane
is a line. To get around this, we can choose among the xy, yz, or 22 planes for
whichever is best. If we implement our points to allow an indexing operation,

e.g., p(0) = z, then this can be accomplished as follows:
if (abs(2,,) > abs(x,)) and (abs(z,,) > abs(y,,)) then

index0 =0
index1 = 1
else if (abs(y,,) > abs (z,,)) then
index0 =0
index1 =2
else
index0 = 1
index1 = 2

Now, all computations can use p(index0) rather than Zp, and so on,



4.5. Shading 81

Another approach to

polygons, one that is often used in practice, is to replace
them by several triangles

4.4 .4 Intersecting a Group of Objects

Qf course, most interesting scenes consist of more than one object, and when we
intersect a ray with the scene we must find only the closest intersection to the
car.nera along the ray. A simple way to implement this is to think of a group of
o.bjects as itself being another type of object. To intersect a ray with a group, you
simply intersect the ray with the objects in the group and return the intersection

th the smallest ¢ value. The following code tests for hits in the interval ¢ €
t(). 11]1

hit = false
for each object o in the group do
if (o is hit at ray parameter ¢ and ¢ € [to, ¢1]) then
hit = true
hitobject = o
t1 =1t
return hit

4.5 Shading

Once the visible surface for a pixel is known, the pixel value is computed by eval-
uating a shading model. How this is done depends entirely on the application—
methods range from very simple heuristics to elaborate numerical computations.
In this chapter we describe the two most basic shading models; more advanced
models are discussed in Chapter 10.

Most shading models, one way or another, are designed to capture the process
of light reflection, whereby surfaces are illuminated by light sources and reflect
part of the light to the camera. Simple shading models are defined in terms of
illumination from a point light source. The important variables in light reflection
are the light direction 1, which is a unit vector pointing toward the light source;
the view direction v, which is a unit vector pointing toward the eye or camera; the
surface normal n, which is a unit vector perpendicular to the surface at the point
where reflection is taking place; and the characteristics of the surface—color,
shininess, or other properties depending on the particular model.

Figure 4.11. A simple
scene rendered with only ray
generation and surface inter-
section, but no shading; each
pixel is just set to a fixed color
depending on which object it
hit.



Illumination  from  real
point sources falls off as
distance squared, but that is
often more trouble than it’s
worth in a simple renderer.

Figure 4.12. Geometry for
Lambertian shading.

When in doubt, make light
sources neutral in color,
with equal red, green, and
blue intensities.

82 4. Ray Tracing

4.5.1 Lambertian Shading

The simplest shading model is based on an observation made by Lambert in the
18th century: the amount of energy from a light source that falls on an area of
surface depends on the angle of the surface to the light. A surface facing directly
toward the light receives maximum illumination; a surface tangent to the light
direction (or facing away from the light) receives no illumination: and in between
the illumination is proportional to the cosine of the angle 6 between the surface

normal and the light source (Figure 4.12). This leads to the Lambertian shading
model:

L = kqImax(0,n-1)

where L is the pixel color; kg is the diffuse coefficient, or the surface color; and
I is the intensity of the light source. Because n and 1 are unit vectors, we can
use n - 1 as a convenient shorthand (both on paper and in code) for cos . This
equation (as with the other shading equations in this section) applies separately to
the three color channels, so the red component of the pixel value is the product of
the red diffuse component, the red light source intensity, and the dot product; the
same holds for green and blue.

The vector 1 is computed by subtracting the intersection point of the ray and
surface from the light source position. Don’t forget that v, 1, and n all must be

unit vectors; failing to normalize these vectors is a very common error in shading
computations.

4.5.2 Blinn-Phong Shading

Lambertian shading is view independent: the color of a surface does not depend
on the direction from which you look. Many real surfaces show some degree
of shininess, producing highlights, or specular reflections, that appear to move
around as the viewpoint changes. Lambertian shading doesn’t produce any high-
lights and leads to a very matte, chalky appearance, and many shading models

add a specular component to Lambertian shading; the Lambertian part is then the
diffuse component.

A very simple and widely used model for specular highlights was proposed
by Phong (Phong, 1975) and later updated by Blinn (J. F. Blinn, 1976) to the form
most commonly used today. The idea is to produce reflection that is at its brightest
when v and 1 are symmetrically positioned across the surface normal, which is
when mirror reflection would occur; the reflection then decreases smoothly as the
vectors move away from a mirror configuration,



4.95. Shading 83

Figure 4.13. A simple Figure 4.14. A simple Figure 4.15. A simple
scene rendered with diffuse scene rendered with diffuse scene rendered with diffuse
shading from a single light shading and shadows (Sec- shading (blue sphere), Blinn-
source. tion 4.7) from three light Phong shading (green sphere),

and shadows from three light
sources.

sources.

We can tell how close we are to a mirror configuration by comparing the
half vector h (the bisector of the angle between v and 1) to the surface normal
(Figure 4.16). If the half vector is near the surface normal, the specular component
should be bright; if it is far away it should be dim. This result is achieved by
computing the dot product between h and n (remember they are unit vectors, so
n - h reaches its maximum of 1 when the vectors are equal), then taking the result
to a power p > 1 to make it decrease faster. The power, or Phong exponent,
controls the apparent shininess of the surface. The half vector itself is easy to
compute: since v and 1 are the same length, their sum is a vector that bisects the
angle between them, which only needs to be normalized to produce h.

Putting this all together, the Blinn-Phong shading model is as follows:

o Wkl
v +1]|°
L = kg Imax(0,n-1) + ks I max(0,n - h)?,

where k; is the specular coefficient, or the specular color, of the surface.

4.5.3 Ambient Shading

Surfaces that receive no illumination at all will be rendered as completely black,
which is often not desirable. A crude but useful heuristic to avoid black shadows
is to add a constant component to the shading model, one whose contribution
to the pixel color depends only on the object hit. with no dependence on the
surface geometry at all. This is known as ambient shading—it is as if surfaces

were illuminated by “ambient” light tha nes equally from everywhere. For

Figure 4.16. Geometry for
Blinn-Phong shading.

Typical values of p:
10—*eggshell™; -
100—mildly shiny;

1000 —really glossy;
10,000 —nearly mirror-like.

When in doubt, make the
specular color gray, with
equal red, green, and blue
values.

In the real world, surfaces
that are not illuminated by
light sources are illumi-
nated by indirect reflec-
tions from other surfaces.




When in doubt set the am-
bient color to be the same
as the diffuse color.

84 4. Ray Tracing

convenience in tuning the parameters, ambient shading is usually expressed as
the product of a surface color with an ambient light color, so that ambient shading
can be tuned for surfaces individually or for all surfaces together. Together with
the rest of the Blinn-Phong model, ambient shading completes the full version of
a simple and useful shading model:

L =kqls+kqgImax(0,n-1)+ k I'max(0,n - h)", (4.3)

where £, is the surface’s ambient coefficient, or “ambient color,” and I, is the
ambient light intensity.

4.5.4 Multiple Point Lights

A very useful property of light is superposition—the effect caused by more than
one light source is simply the sum of the effects of the light sources individually.

For this reason, our simple shading model can easily be extended to handle N
light sources:

N

L=kql,+ Z [ka Ii max(0,n - 1;) + ks I, max(0,n - h;)?] 4.4)

=1

where /;, 1;, and h; are the intensity, direction, and half vector of the i light
source.

4.6 A Ray-Tracing Program

We now know how to generate a viewing ray for a given pixel, how to find the
closest intersection with an object, and how to shade th
These are all the parts required for a program th
hidden surfaces removed.

e resulting intersection.
at produces shaded images with

for cach pixel do
compute viewing ray
if (ray hits an object with ¢ ¢ [0,00)) then
Compute n
Evaluate shading model
else
set pixel color to background color

and set pixel to that color



4.6. A Ray-Tracing Program 85

Here the statement “if ray hits an object ...™ can be implemented using the algo-
rithm of Section 4.4.4.

In an actual implementation, the surface intersection routine needs to some-
how return either a reference to the object that is hit, or at least its normal vec-
tor and shading-relevant material properties. This is often done by passing a
record/structure with such information. In an object-oriented implementation, it
is a good idea to have a class called something like surface with derived classes
triangle, sphere, group, etc. Anything that a ray can intersect would be under that
class. The ray-tracing program would then have one reference to a “surface” for

the whole model, and new types of objects and efficiency structures can be added
transparently.

4.6.1 Object-Oriented Design for a Ray-Tracing Program

As mentioned earlier, the key class hierarchy in a ray tracer are the geometric
objects that make up the model. These should be subclasses of some geometric
object class, and they should support a hit function (Kirk & Arvo, 1988). To
avoid confusion from use of the word “object,” surface is the class name often
used. With such a class, you can create a ray tracer that has a general interface
that assumes little about modeling primitives and debug it using only spheres. An
important point is that anything that can be “hit” by a ray should be part of this
class hierarchy, e.g.. even a collection of surfaces should be considered a subclass
of the surface class. This includes efficiency structures, such as bounding volume
hierarchies; they can be hit by a ray, so they are in the class.

For example, the “abstract” or “base” class would specify the hit function as
well as a bounding box function that will prove useful later:

class surface

virtual bool hit(ray e + td, real ¢, real ¢, hit-record rec)
virtual box bounding-box()

Here (Z,t1) is the interval on the ray where hits will be returned, and rec is a
record that is passed by reference: it contains data such as the ¢ at the intersection
when hit returns true. The type box is a 3D “bounding box.” that is two points that
define an axis-aligned box that encloses the surface. For example, for a sphere,
the function would be implemented by

box sphere::bounding-box ()
vector3 min = center — vector3(radius,radius,radius)
vector3 max = center + vector3(radius,radius,radius)
return box(min, max)



Figure 4.17. The point p is
not in shadow, while the point
q is in shadow.

p+el® p

Figure 4.18. By test-
ing in the interval starting at
¢, we avoid numerical impre-
cision causing the ray to hit the
surface p is on.

4. Ray Tracing

Another class that is useful 1s material. This allows you to abstract the material
behavior and later add materials transparently. A simple way to link objects and
materials is to add a pointer to a material in the surface class, although more
programmable behavior might be desirable. A big question is what to do with
textures; are they part of the material class or do they live outside of the material
class? This will be discussed more in Chapter 11.

4.7 Shadows

Once you have a basic ray tracing program, shadows can be added very easily.
Recall from Section 4.5 that light comes from some direction 1. If we imagine
ourselves at a point p on a surface being shaded, the point is in shadow ifuwe
“look™ in direction 1 and see an object. If there are no objects, then the light is not
blocked. i

This is shown in Figure 4.17, where the ray p + tl does not hit any objects
and is thus not in shadow. The point q is in shadow because the ray q + t1 does
hit an object. The vector 1 is the same for both points because the light iS “far”
away. This assumption will later be relaxed. The rays that determine zibn or out of
shadow are called shadow rays to distinguish them from viewing rays

To .get'tht‘e algorithm for shading, we add an if Statement to dgterr);li.ne whether
the point is in shadow. In a naive implementation, the shadow ray will check
fort € [0, 00), but because of numerical imprecision, this can resul}t/' inter-
section with the surface on which p lies, Instead, the; u 18
that problem is to test for t € [e, x0)
(Figure 4.18).

If we implement shadow rays for Phon
have the following:

sual adjustment to avoid
where € is some small positive constant

g lighting with Equation 4.3 then we

function raycolor( ray e + td, rea] to,
hit-record rec, srec
if (scene—hit(e + td, ¢y, ¢, rec)) then
p=e+ (rec.t)d
color ¢ = rec.k, I,
if (not scene—hit(p + sl, ¢, 00, srec)) then
vector3 h = normalized(normalized(l)
¢ = c+rec.ky I max (0, rec.n - 1) +
return ¢
else
return background-color

real ¢, )

+ normalized(—d))
(rec.ky) I (rec.n - )P



4.8. ldeal Specular Reflection 87

Note that the ambient color is added whether p is in shadow or not. If there are
multiple light sources, we can send a shadow ray before evaluating the shading
model for each light. The code above assumes that d and 1 are not necessarily unit
vectors. This is crucial for d, in particular, if we wish to cleanly add instancing
later (see Section 13.2).

4.8 Ideal Specular Reflection

It is straightforward to add ideal specular reflection, or mirror reflection, to a ray-
tracing program. The key observation is shown in Figure 4.19 where a viewer
looking from direction e sees what is in direction r as seen from the surface. The
vector r is found using a variant of the Phong lighting reflection Equation (10.6).
There are sign changes because the vector d points toward the surface in this case,
SO,

r=d-2(d -n)n. (4.5)

In the real world., some energy is lost when the light reflects from the surface, and
this loss can be different for different colors. For example, gold reflects yellow
more efficiently than blue, so it shifts the colors of the objects it reflects. This can
be implemented by adding a recursive call in raycolor:

color ¢ = ¢ + k,,raycolor(p + sr, €, 00)

where k,,, (for “mirror reflection”) is the specular RGB color. We need to make
sure we test for s € [e, o0) for the same reason as we did with shadow rays; we
don’t want the reflection ray to hit the object that generates it.

The problem with the recursive call above is that it may never terminate. For
example, if a ray starts inside a room, it will bounce forever. This can be fixed by
adding a maximum recursion depth. The code will be more efficient if a reflection
ray is generated only if k,, is not zero (black).

4.9 Historical Notes

Ray tracing was developed early in the history of computer graphics (Appel,
1968) but was not used much until sufficient compute power was available (Kay
& Greenberg, 1979; Whitted. 1980).

Ray tracing has a lower asymptotic time complexity than basic object-order
rendering (Snyder & Barr, 1987; Muuss, 1995; S. Parker et al., 1999; Wald,
Slusallek, Benthin, & Wagner, 2001). Although it was traditionally thought of

n
: 2
d
06
Figure 4.19.  When look-

ing into a perfect mirror, the
viewer looking in direction d
will see whatever the viewer
“below” the surface would see
in direction r.

A sim-
ple scene rendered with dit-
fuse and Blinn-Phong shad-
ing, shadows from three light
sources, and specular reflec-
tion from the floor.

Figure 4.20.



1
il
=

88 4. Ray Tracing

as an offline method, real-time ray tracing implementations are becoming more
and more common.

Frequently Asked Questions

e Why is there no perspective matrix in ray tracing?

The perspective matrix in a z-buffer exists so that we can turn the perspective pro-
jection into a parallel projection. This is not needed in ray tracing, because it is

easy to do the perspective projection implicitly by fanning the rays out from the
eye.

e Can ray tracing be made interactive?

For sufficiently small models and images, any modern PC is sufficiently pow-
erful for ray tracing to be interactive. In practice, multiple CPUs with a shared
frame buffer are required for a full-screen implementation. Computer power is in-
creasing much faster than screen resolution, and it is Just a matter of time before
conventional PCs can ray trace complex scenes at screen resolution.

o Is ray tracing useful in a hardware graphics program?

Ray tracing is frequently used for picking. When the user clicks the mouse on 2

pixel in a 3D graphics program, the Program needs to determine which object is
visible within that pixel. Ray tracing is an ideal way to determine that.

Exercises

I. What are the ray parameters of the intersecti

t(—1,—1,—1) and the sphere centered at
this is a good debugging case.

on points between ray (1,1, 1)+
the origin with radius 1? Note:

3]

What are the barycentric coordinates a
(]1 ]s ]) + [(_.]’ _1’ _1)
and (0,0, 1)? Note: this is

S ¢S and ray parameter where the ray
its the triangle with vertices (1,0,0), (0,1,0)s
a good debugging case.

3. Do a back of the envelope computation of th
of ray tracnpg on “nice?’ (non-adversarial) models. Split your analysis into
the cases of preprocessing and Computing the image, so that you can predict

s for a static model.

¢ approximate time complexity

the behavior of ray tracing multiple frame



12.3. Spatial Data Structures 297

the object to the root of the data structure, For example, consider the model of a
ferry that has a car that ¢an move freely on the deck of the ferry, and wheels that
each move relative to the car as shown in Figure 12.21.

As with the pendulum. cach object should be transformed by the product of
the matrices in the path from the root to the object:

* ferry transform using M:
* car body transform using MM, :
* left wheel transform using M, M, Moy,

* left wheel transform using MM, M;.

An efficient implementation can be achieved using a matrix stack, a data structure

supported by many APIs. A matrix stack is manipulated using push and pop op-
erations that add and delete matrices from the right-hand side of a matrix product.
For example, calling:

push(M,)

push(M; )

push(Ms;)

creates the active matrix M — MM ;M,. A subsequent call to pop() StriPS Fhe
last matrix added so that the active matrix becomes M = MyM,. Combining
the matrix stack with a recursive traversal of a scene graph gives us:

function traverse(node)

push(Miqcq )

draw object using composite matrix from stack

traverse(left child)

traverse(right child)

pop()

There are many variations on scene graphs but all follow the basic idea above.

12.3 Spatial Data Structures

In many, if not all, graphics applications, the ability to quickly locate‘ geomiu"ut
objects in particular regions of space is important. Ray trucen:s need to find ObJL‘Lt;
that intersect rays; interactive applications navigating an enwr(.)nnlegt nceq to ‘hm
the objects visible from any given viewpoint; games and physical slnlul“ltlons.r’ed
quire detecting when and where objects collide. All these needs can be supporte

M2 M3

Figure 12.21. A ferry, a car
on the ferry, and the wheels of
the car (only two shown) are
stored in a scene-graph.



|
l ‘ 298 12. Data Structures for Graphics
! by various spatial data structures designed to organize objects in space so they
| can be looked up efficiently.

3 In this section we will discuss examples of three general classes of spatial data
hi structures. Structures that group objects together into a hierarchy are object par-
i titioning schemes: objects are divided into disjoint groups, but the groups may
! end up overlapping in space. Structures that divide space into disjoint regions

are space partitioning schemes: space is divided into separate partitions, but one
object may have to intersect more than One partition. Space partitioning schemes
can be regular, in which space is divided into uniformly shaped pieces, or irregu-

lar, in which space is divided adaptively into irregular pieces, with smaller pieces
where there are more and smaller objects.

We will use ray tracing as the prim

ary motivation while discussing these struc-
tures, though they can all also be useq for view culling or collision detection. In
Chapter 4, all objects were looped over while ¢

objects, this is an O(N) linear search and i

e
=
(1]
=
=
o
(¢)
&
=
o
(2}
©]
=
el
c
(€]
-
-
o
o
=R
=4
(@)
5
o
=1
[l
¢}
(«H
=]
7%
f o=
T
=]
a
0
=
a
=
(¢

can create an ordered data
Y techniques to do this.

¢ techniques
ed, 1980; Whitted, 1980; G
1 (Cleary, Wyvill, Birtwist]
Tanaka, & Iwata, 1986; Amanatides & Woo, 1987
ing (Glassner, 1984: Jansen, 1986: Havran, 2000).
strategies is shown in Figure 1222,

This section discusses three of thes n details Beidie voln
hierarchies (Rubin & Whit Old%mit.h . Sa]mobn 1087),
€, & Vatti, 1983; Fujimoto;
» and binary space partition-
An example of the first tWO

Figure 12.22.  Left: a uniform p

artitioning of ac ight:
Image courtesy David DeMarle. i

Adaptive bounding-box hierarchy-



12.3. Spatial Data Structures 299

12.3.1 Bounding Boxes

A key operation in most intersection-
tersection of a ray with a bounding bo
Tt xx TR
tional intersection tests in that we do not need to know where the ray hits the box;
we only need to know whether it hits the box
TO . - . ' . Lo 1 1

hbu1ld.an a.lgorlthm for ray-box intersection, we begin by considering a 2D

ray whose direction vector has positive x and y components. We can generalize

this to arbitrary 3D rays later. The 2 bounding box is defined by two horizontal
and two vertical lines:

acceleration schemes is computing the in-
X (Figure 12.23). This differs from conven-

L = Tmin,
T = Tmax,
Y = Ymin,
Y = Ymax-

The points bounded by these lines can be described in interval notation:

(l'y) & [-'Bmina-'L'max] X [yminwymax]-

As shown in Figure 12.24, the intersection test can be phrased in terms of these
intervals. First, we compute the ray parameter where the ray hits the line z =
Tmin-

Tmin — Te

txmin ==
Tq

We then make similar computations for xmaxs fymins @and tymax. The ray hits the
box if and only if the intervals [y, txmax] and [tymin, tymax| OVerlap, i.e., their

intersection is nonempty. In pseudocode this algorithm is:

txmin = (-Tmin - J'c)/fl'd

txmax = (LUmax = -7'(’)/517(1

tymin = (ymin = y(')/l‘/d

tymax = (.Unlznx - .l/t’)/'.(/d

if (txmin > f)‘mu,\) or (f_\rmm > txmux) then
return false

else
return true

The if statement may seem non-obvious. To see the logic of it, note that there is
no overlap if the first interval is either entirely to the right or entirely to the left of
the second interval.

Bounding box

LA
<

Ray

Figure 12.23. The ray
is only tested for intersection
with the surfaces if it hits the
bounding box.




300 12. Data Structures for Graphics

1

t

ymax

g
/;xmax /
tymin

ﬁxmin

te [txmin, tymax] —@ A

te [tymin. tymax]

te [txmin. txmax] (@) [tymin, tymax]

[ ]

Figure 12.24. The ray wil} bp inside the interval x [Xmin, Xmax] for some interval in its parameter
space t € [tx,."m. Ixmax]. A similar interval exists for the y interval. The ray intersects the box if it is
in both the x interval and y interval at the same time, i.e., the intersection of the two one-dimensional
intervals is not empty. :

The first thing we must address is the case when
negative, then the ray will hit z,,,, before it hits 2
Lxmin and tyma, expands to:

T4 Or yq is negative. If 24 is
min- Thus the code for computing

if (z; > 0) then
Lxmin = (xmin = LI,‘(;)/.],‘(I
txmax = (-’L'max = LL‘C)/:L‘d
else
txmin = (Tmax — Te) [Bg
Lxmax = (41/'min == -Tp)/.’lfd

A similar code expansion must be made for the y cases. A major concern is that
horizontal and vertical rays have a zero value for y,; and T4, respectivel LThiq
will cause divide by zero which may be a problem. However before addi.essin;’
this directly, we check whether IEEE floating point computz;tion handles tf‘leﬂ‘:
cases gracefully for us. Recall from Section 1.5 the rules for divide by Z(;I'O' f;)r



12.3. Spatial Data Structures 301

any positive real number ¢,

+a/0 = +o0;
—a/0 = —c0.
Consider the case of a vertical ray where 27, = () and Ya > 0. We can then
calculate
g ol S S5 e
I = e
“ 0
" _ Tmax — Te
U S e —
0

There are three possibilities of interest:
L7, < 7 (no hit);
2. Zmin < Te < Tmay (hit):
3. Tz <exei(mo hit).

For the first case we have

positive number

txmin = T
0

positive number

txmax = T

This yields the interval (Exmins Exmin) = (00,00). That interval will not overlap

with any interval, so there will be no hit, as desired. For the second case, we have

negative number

txmin = 0
positive number
fxmax = .
0
This yields the interval (t,,,. txmin) = (—00,00) which will overlap with all

intervals and thus will yield a hit as desired. The third case results in the interval

(—00, —o0) which yields no hit, as desired. Because these cases work as desired,

we need no special checks for them. As is often the case. IEEE floating point

conventions are our ally. However, there is still a problem with this approach.
Consider the code segment:

if (x4 > 0) then
tmin = (Tmin — T, ),/‘J',l

tmax = (Tmax — & )/



Bounding box
Y = Ymax
d
Ray ) = Ymin
e X=ZXmin ¥ = Xmin
Figure 12.25. A 2D ray

e + td is tested against a 2D
bounding box.

Bounding box

» V>
4
N

Figure 12.26. The bound-
ing boxes can be nested by
creating boxes around subsets
of the model.

302 12. Data Structures for Graphics
else
tmin = (517mux o -I'(-)/J'll
tmax = (-77min - -1'1*)/-17(1
This code breaks down when 4 = —0. This can be overcome by testing on the
reciprocal of 4 (A. Williams, Barrus, Morley, & Shirley, 2005):
a = 1/.’1,‘{1

if (a > 0) then
tmin = a(Tmin — :Bc)
tmax = a(Tmax — xc)
else
tmin = a(:L'max = -T'c)
tmax = a(Tmin — me)

12.3.2 Hierarchical Bounding Boxes

The basic idea of hierarchical bounding boxes can be seen by the common tactic
of placing an axis-aligned 3D bounding box around all the objects as shown in
Figure 12.25. Rays that hit the bounding box will actually be more expensive
to compute than in a brute force search, because testing for intersection vSith the

box is not free. However, rays that miss the box are cheaper than the brute force
search. Such bounding boxes can be made hierarchic

objects in a box and placing a box around each
The data structure for the hierarchy shown in
the large bounding box at the root and the two
right subtrees. These would in turn each poi
intersection of a ray with this particular hard-

if (ray hits root box) then

if (ray hits left subtree box) then
check three triangles for intersection

if (ray intersects right subtree box) then
check other three triangles for intersection

if (an intersections returned from each sub
return the closest of the two hits

else if (a intersection is returned from exact]

return that intersection
else

return false
else
return false

. al by partitioning the set of
Pfll’tltlon as shown in Figure 12.26.
Figure 12.27 might be a tree with
smaller bounding boxes as left and

Nt to a list of three triangles. The
coded tree would be:

tree) then

Y One subtree) then



12.3. Spatial Data Structures 303

Some observations related to this algorithm are that there is no geometric ordering

between the two subtrees, and there is no reason a ray might not hit both subtrees.
Indeed, there is no reason that the two subtrees might not overlap.

A key point of such data hierarchies is that a box is guaranteed to bound all
objects that are below it in the hierarchy, but they are not guaranteed to contain
all objects that overlap it spatially, as shown in Figure 12.27. This makes this
geometric search somewhat more complicated than a traditional binary search on
strictly ordered one-dimensional data. The reader may note that several possible

optimizations present themselves. We defer optimizations until we have a full
hierarchical algorithm,

If we restrict the tree to be binary and require that each node in the tree have a

bounding box, then this traversal code extends naturally. Further, assume that all
nodes are either leaves in the tree and contain a

primitive, or that they contain one
Or two subtrees.

The bvh-node class should be of t

ype surface, so it should implement
surface:

:hit. The data it contains should be simple:

class bvh-node subclass of surface
virtual bool hit(ray e + td, real Lo, real ¢y, hit-record rec)
virtual box bounding-box ()
surface-pointer left

surface-pointer right
box bbox

The traversal code can then be called recursively in an object-oriented style:
function bool bvh—node::hit(ray a + tb, real t(, real ¢,
hit-record rec)
if (bbox.hitbox (a + th, t,, t1)) then
hit-record Irec, rrec
left-hit = (left # NULL) and (left — hit(a + tb, to, t1, Irec))

right-hit = (right # NULL) and (right — hit(a+tb, to, t1, rrec))
if (left-hit and right-hit) then
if (Irec.t < rrec.t) then

rec = Irec
else
rec = rrec

return true

else if (left-hit) then
rec:=lrec
return true

else if (right-hit) then

fo . !
% ®
=
1L dee
Figure 12.27. The gray

box is a tree node that points
to the three gray spheres, and
the thick black box points to
the three black spheres. Note
that not all spheres enclosed
by the box are guaranteed to
be pointed to by the corre-
sponding tree node.




-

304 12. Data Structures for Graphics

rec = 1rec
return true
else

return false
else
return false

Note that because 1eft and right point to surfaces rather than bvh-nodes
specifically, we can let the virtual functions take care of distinguishing between
internal and leaf nodes: the appropriate hit function will be called. Note that if
the tree is built properly, we can eliminate the check for left being NULL. If we
want to eliminate the check for right being NULL, we can replace NULL right

on the details of tree construction.

There are many ways to build a tree for a boundin

g volume hierarchy. It is
convenient to make the tree binary,

roughly balanced, and to have the boxes of

defined by an integer with 2 = 0, y
function bvh-node::create(
N = A.length
if (N= 1) then
left = A[0]
right = NULL
bbox = bounding-box(A[0])
else if (N= 2) then
left-node = A[0]
right-node = A[1]
bbox = combine(bounding-box(A[
else
sort A by the object center along AXIS
left= new bvh-node(A[0..N/2 — 1], (AXIS +1) mod 3)
right = new bvh-node(A[N/2. N 1], (AXIS +1) mog 3)
bbox = combine(left — bbox. right — bbox)

object-array A, int AXIS)

0]), bounding-box(A[l] )

The quality of the tree can be improved by carefully choosin
One way to do this is to choose the axis such that the
bounding boxes of the two subtrees is minimized. Th
tating through the axes will make little difference for g
cally distributed small objects, but it may he

& AXIS each time.
SUm of the volumes of the
is change Ccompared to ro-
¢enes composed of isotopi-

Ip Significantly i less well-behaved



12.3. Spatial Data Structyres 305

scenes. This code can also be m

ade more efficient by doing just a partition rather
than a full sort,

Another, and probably better, way to build the tree is to have the subtrees
contain about the same amount of space rather than the same n
To do this we partition the list based on Space:

function bvh-nodc::crcate(

N = Allength
if (N = 1) then

left = A[0]

right = NULL

bbox = bounding-box(A[0))
else if (N = 2) then

left = A[0)

right = A[1]

bbox = combine(bounding-box(A[O]), bounding-box(A[1]))
else

umber of objects.

object-array A, int AXIS)

find the midpoint m of the bounding box of A along AXIS
partition A into lists with lengths % and (N — k) surrounding m
left = new bvh-node(A0..k], (AXIS +1) mod 3)

right = new bvh-node(A[k + 1..N — 1], (AXIS +1) mod 3)
bbox = combine(left — bbox, right — bbox)

Although this results in an unbalanced tree, it allows for easy traversal of empty
space and is cheaper to build because partitioning is cheaper than sorting.

12.3.3 Uniform Spatial Subdivision

Another strategy to reduce intersection tests is to divide space. This is funda-

mentally different from dividing objects as was done with hierarchical bounding
volumes:

* In hierarchical bounding volumes, each object belongs to one of two sibling
nodes, whereas a point in space may be inside both sibling nodes.

* In spatial subdivision, each point in space belongs to exactly one node,
whereas objects may belong to many nodes.

In uniform spatial subdivision, the scene is partitioned into axis-aligned boxes.
These boxes are all the same size, although they are not necessarily cubes. The
ray traverses these boxes as shown in Figure 12.28. When an object is hit, the
traversal ends.



306 “‘ata Structures for Graphics

- HEERFEELIN
 — gl |
= |
N‘V\\
s T
YT
N : SSEUI S

Figure 12.28. In uniform spatial subdivision, the ray is tracked forward through cells until an object
in one of those cells is hit. In this example, only objects in the shaded cells are checked.

The grid itself should be a subclass of surface and should be implemented as
a 3D array of pointers to surface. For empty cells these pointers are NULL. For
cells with one object, the pointer points to that object. For cells with more than

one object, the pointer can point to a list, another grid, or another data structure.
such as a bounding volume hierarchy.

This traversal is done in an incremental fashion. The regularity comes from
the way that a ray hits each set of parallel planes, as shown in Figure 12.29. To
see how this traversal works, first consider the 2D case where the ray direction
has positive = and y components and starts outside the

i grid. Assume the grid is
bounded by points (g, /min ) and (

Tmax; Ymax ). The grid has n, x n, cells.

/

7 s

d

Figure 12.29.  Although the pattern of cell hj .
planes are very even, {15 seems irregular (left), the hits on sets of parallel




12.3. Spatial Data Structures e

Our first order of business is to find the index (2, j) of the first cell hit by
the ray e + fd. Then, we need to traverse the cells
key parts to this algorithm are findin ‘
to increment

with objects i

in an appropriate order. The
o § (Bmars 155 g the initial cell (i, j) and decidi_ng whether
el iyl - ). Note that when i .check for an intersection
o implcmcmatio. ‘o rict the range off to be within the cell (Figure 12.31).
: ns make the 3D array of type “pointer to surface.” To improve
the locality of the traversal, the array can be tiled as discussed in Section 12.5.

12.3.4 Axis-Aligned Binary Space Partitioning

We C.a.n a?so partition space in a hierarchical data structure
,;art.mm?mg tree (BSP tree). This is similar to the BSP
sorting in Section 12.4, but it’s most common to use a
polygon-aligned, cutting planes for ray intersection.

such as a binary space
tree used for visibility
xis-aligned, rather than

Bl ' .
A node in this structure contains a single cutting plane and a left and right
subtree. Each subtree contains all the obj

O s ot e jects on one side of the cutting plane.
jects that pass through the plane are stored in in both subtrees. If we assume

the cutting plane is parallel to the Yz plane at z = D, then the node class is:
class bsp-node subclass of surface
virtual bool hit(ray e + td, real to,
virtual box bounding-box ()
surface-pointer left
surface-pointer right
real D

real ¢, hit-record rec)

We generalize this to y and » cutting planes later. The intersection code can then

be called rec.ursively in an object-oriented style. The code considers the four
cases shown in Figure 12.32. For our purposes, the origin of these rays is a point
at parameter {:

P=a+ [,(;b.

The four cases are:

I. The ray only interacts with the left subtree, and we need not test it for
Intersection with the cutting plane. It occurs for x, < Dandx, < 0.

2. The ray is tested against the left subtree, and if there are no hits, it is then
tested against the right subtree. We need to find the ray parameterat z = D,

so we can make sure we only test for intersections within the subtree. This
case occurs for z,, < D and x3 > 0.

/ncxt
Ra)’ A last

Cell (i,))

Figure 12.30.  To decide
whether we advance right or
upward, we keep track of the
intersections with the next ver-
tical and horizontal boundary
of the cell.

b,
a

Ray//

Cell (3, /)

Figure 12.31. Only hits
within the cell should be re-
ported.  Otherwise the case
above would cause us to report
hitting object b rather than ob-
ject a.

\ T
Gasel Case 3
—_— ~—

Case 2 Case 4
x=D
Figure 12.32. The

four cases of how a ray re-
lates to the BSP cutting plane
x=D.




308 12. Data Structures for Graphics

3. This case is analogous to case 1 and occurs for x;,, > D and x;, > 0.

4. This case is analogous to case 2 and occurs for 2, > D and x;, < 0.

The resulting traversal code handling these cases in order is:

function bool bsp-node::hit(ray a + tb, real ¢, real ¢,
hit-record rec)
Tp = Tq + toTp
if (z,, < D) then
if (z;, < 0) then
return (left # NULL) and (left—hit(a + tb, ¢, ty,rec))
t= (D —x4)/zp
if (t > 1) then
return (left # NULL) and (left—hit(a + tb, o, t,. rec))
if (left # NULL) and (left—hit(a + tb, to, t, rec)) then
return true
return (right # NULL) and (right—>hit(a =t t
else
analogous code for cases 3 and 4

rec))

This is very clean code. However, to get it started, we need to hit some root objéct
that includes a bounding box so we can initialize the tr.

we have to address is that the cutting plane ma
an integer index axis to the bsp-node class.
for points, this will result in some simple mo
example,

aversal, ty and t;. An isSu€
y be along any axis. We can add
If we allow an indexing operator
difications to the code above. fOr

Tp = Tq + toxp

would become

up = afaxis] + toblaxis|

which will result in some additional

array indexine
branches. >

but will not generate more

P-node is faster thap processing a bvh-nod¢:

Xist in more th > aré

" ; k an one s e means there

more nodes and, potentially, a higher memory use, 4 ubtree means t .
s¢. How

LT S PR el S “well” the trees are b
determines which is faster. Building the tree j similar to bujldi > BVH tre¢
We can pick axes to split in a cycle O building the

s and we can splis ; . an
B i ; Split in half each time we c&
try to be more sophisticated in how we divide PUtn half each time, or

the fact that a single surface may e



13

More Ray Tracing

A ray tracer is a great substrate on which to build
effects. Many effects that take significant work

terization framework, including basics like the shadows and reflections already
p.resented in Chapter 4, are simple and elegant in a ray tracer. In this chapter, we
discuss some fancier techniques that can be used to ray-trace a wider variety of
scenes and to include a wider variety of effects. Some extensio
eral geometry: instancing and constructive solid

all kinds of advanced rendering
to fit into the object-order ras-

ns allow more gen-

geometry (CSG) are two ways
to make models more complex with minimal complexity added to the program.
Other extensions add to the range of materials we can handle: refraction through
transparent materials, like glass and water. and glossy reflections on a variety of
surfaces are essential for realism in many scenes.

This chapter also discusses the general framework of distribution ray trac-
ing (Cook, Porter, & Carpenter, 1984), a powerful extension to the basic ray-
tracing idea in which multiple random rays are sent through each pixel in an im-
age to produce images with smooth edges and to simply and elegantly (if slowly)
produce a wide range of effects from soft shadows to camera depth-of-field.

The price of the elegance of ray tracing is exacted in terms of computer time:
most of these extensions will trace a very large number of rays for any nontrivial
scene. Because of this, it’s crucial to use the methods described in Chapter 12 to
accelerate the tracing of rays.

323

If you start with a brute-
force ray intersection loop.
you’ll have ample time to
implement an acceleration
structure while you wait for
images to render.




Example values of n:
air: 1.00;

water: 1.33-1.34;
window glass: 1.51;
optical glass: 1.49-1.92;
diamond: 2.42.

324 13. More Ray Tracing

13.1 Transparency and Refraction

In Chapter 4, we discussed the use of recursive ray tracing to compute specular,
or mirror, reflection from surfaces. Another type of specular object is a dielec-
tric—a transparent material that refracts light. Diamonds, glass, water, and air are
dielectrics. Dielectrics also filter light; some glass filters out more red and blue
light than green light, so the glass takes on a green tint. When a ray travels from
a medium with refractive index n into one with a refractive index n,, some of the
light is transmitted, and it bends. This is shown for n; > 7 in Figuré,13 1. Snell’s
Law tells us that h

nsinf = ny sin .

Computmg the sine of an angle between two vectors is usually not as convenient
as computing the cosine, which is a simple dot product for the unit vectors such
as we have here. Using the trigonometric identity sin® @ + cos?f = 1, we can
derive a refraction relationship for cosines: ;

n? (1 — cos? 6)

p)
ni

cos?p=1—

Note that if n and n; are reversed, then so are ¢
4 and -
Figure 13.1. ¢ as shown on the right of

.T(? convert sin ¢ and cos ¢ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of the surface normal, n, and the ray direction, d

From Flgur.e 13.2, we ca'n. see that n and b form an orthonormal basis for the
plane of refraction. By definition, we can describe the direction of the transformed

=

Figure 13.1. Snell’s Law describes how the an

. l i
indices of the object and the surrounding medium, 8¢ ¢ depends on the angle 6 and the refractive



This means that we can solve for t with known variables:

¢ — n(d 4 ncosh))

he —ncoso
_n(d-n(d- 2. (Fsat (e T2Y2
o :t( n”_n\/l_"(l n( n)2)

Note that this equation works regardless of which of n and n; is larger. An im-
mediate question is, “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known as rotal internal reflection, and it is responsible for much of the
rich appearance of glass objects.

The reflectivity of a dielectric varies with the incident angle according to the
Fresnel equations. A nice way to implement something close to the Fresnel equa-
tions is to use the Schlick approximation (Schlick, 1994a),

R(0) = Ry + (1 — Ro) (1 — cosf)’,

where Ry is the reflectance at normal incidence:

R{) o Ty — 1 ?

; (nt + 1> '

Note that the cos @ terms above are always for the angle in air (the larger of the
internal and external angles relative to the normal).

For homogeneous impurities, as is found in typical colored glass, a light-
carrying ray’s intensity will be attenuated according to Beer’s Law. As the ray
travels through the medium it loses intensity according to dI = —CI dz, where
dz is distance. Thus, dI/dxz = —C1. We can solve this equation and get the
exponential I = kexp(—Cwx). The degree of attenuation is described by the
RGB attenuation constant a, which is the amount of attenuation after one unit of
distance. Putting in boundary conditions, we know that 7(0) = Iy, and I(1) =

Figure 13.2.  The vectors
n and b form a 2D orthonor-
mal basis that is parallel to the
transmission vector t.




326 13. More Ray Tracing

Figure 13.3.  The color of the glass is
amount of light transmitted and reflected is
on the ground plane was computed using p.

affected by total internal reflection and Beer’s Law. The
determined by the Fresnel equations. The complex lighting
article tracing as described in Chapter 23.

al(0). The former implies 2} = Iy exp(—Cux). The latter implies lpa =
Ip exp(—C), so —C = In(a). Thus, the final formula is

1(s) = I(0)eln(@),
where /(s) is the intensity of the beam at distance s from the interface. In practice,
we reverse-engineer a by eye, because such data is rarely easy to find. The effect
of Beer’s Law can be seen in Figure 13.3, Where the glass takes on a green tint.

To add transparent materials to our code, we nee
a ray is going “into” an object. The simplest way to
objects are embedded in air with refractive index very
normals point “out” (toward the air). The code se
with these assumptions is:

d a way to determine when
do this is to assume that all
close to 1.0, and that surface
gment for rays and dielectrics

if (p is on a dielectric) then
r = reflect(d, n )
if (d - n < 0) then
refract(d, n, n, t)

c=—d-n
else

kr = exp(—a,t)

kg = exp(—ag4t)

ky = exp(—apt)

if refract(d, —n, 1/n, t) then
c=t:n

else
return £  color(p + tr)

Ro= (n—1)?/(n+ 1)




13.2. Instancing
327

R=Rs4(1 - Ro)(1 = ¢)5
return k(R color(p + tr) + (1 — R) color(p + tt))

The code above a5 *
>sumes that the natural log has been folded into the constants

(ar.0g,ap). The refract fimes:
g: @b fract function returns false if there is total internal reflection.

and otherwise it fills ; 3
¢ itfills in the Jast argument of the argument list.

152 Instancing

An elegant property of ray tracing is that it

i & : i allows very natural instancing. The
basic 1dea of instancing is to distort

N R Sy all points on an object by a transformation
¢ objectis displayed. For example, if we transform the unit circle

in 2D) by a scz g ‘ :

(mwc ()mg :ns.:glc factor (2, 1) in 2 and Y, respectively, then rotate it by 45°, and
( Aeas i i

;n e ; o “;C r-direction, the result is an ellipse with an eccentricity of
a d ng axis el 3 . '

The ke lh'g x]ls along the (z = —y)-direction centered at (0, 1) (Figure 13.4).

h i ltltg that makes that entity an “instance” is that we store the circle and

>OMpoSs : ol : . :
t c composite transfgrm matrix. Thus, the explicit construction of the ellipse is
left as a future operation at render time.
.The adva.ntage o Instancing in ray tracing is that we can choose the space in
which to do intersection. If the base ob;

R ect is composed of a set of points, one of
which is

P. then the transformed object is composed of that set of points trans-
formed by matrix M, where the example point is transformed to Mp. If we have
%1 ray a + tb that we want to intersect with the transformed object, we can instead
intersect an inverse-transformed ray with the untransformed object (Figure 13.5).

There are two potential advantages to computing in the untransformed space (i.e.,
the right-hand side of Figure 13.5):

I. The untransformed object may have a simpler intersection routine, e.g., a
sphere versus an ellipsoid.

2. Many transformed objects can share the same untransformed object thus
reducing storage, e.g., a traffic Jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 6.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 13.5, we can de-
termine the intersection of a ray and an object transformed by matrix M. If we
create an instance class of type surface, we need to create a hit function:

instance::hit(ray a + tb, real t(, real #,, hit-record rec)
rayr' =M 'a+tM 'b

cNa=t

1. scale
2. rotate 3. move

Figure 13.4. An instance of
a circle with a series of three
transforms is an ellipse.



328 13. More Ray Tracing

Points Mp on circle

Ray M~'a + t M~1b

Points p on circle

Raya+tb

Figure 13.5. The ray intersection problem in the two spaces are just simple transforms of each other.

The object is specified as a sphere plus matrix M. The ray is specified in the transformed (world) space
by location a and direction b.

if (base-object—hit(r’, fo, t1, rec)) then
recn = (M~ ") Trec.n
return true

else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either Space. Also note that we need not
compute or store the matrix M.

This brings up a very important point: the ray direction b must not be re-

stricted to a unit-length vector, or none of the infrastructure above works. For this
reason, it is useful not to restrict ray directions to unit vectors

13.3 Constructive Solid Geometry

One nice thing about ray tracing is that any geometric Primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to add constructive solid geometry (CSG) to a ray



13.4. Distribution Ray Tracing 329

tracfer (Roth, 1982) The basic idea of CSG
solid sha.pes. These basic operations are sho
can be viewed as et operations,

points in the circle and
operation C' N S s the
other operations are ang]

is to use set operations to combine
wn in Figure 13.6. The operations
For example, we can consider (' the set of all
S the set of all points in the square. The intersection

et of all points that are both members of €' and S. The
ogous.

Although one can do CSG dire
image. we do not need to ex
operations direct]
we find all the in

ctly on the model, if all that is desired is an
plicitly change the model. Instead, we perform the set
yon tl?e rays as they interact with a model. To make this natural.
tersections of g ray with a model rather than just the closest. For
.a + b might hit a sphere at t = 1 and ¢ = 2. In the context
of CSG. we think of this as the ray being inside the sphere for ¢ < [1.2]. We
can compute these “inside intervals™ for all of the surfaces and do set operations
on thf)sff intervals (recall Section 2.1.2). This is illustrated in Figure 13.7, where
the hit mtervz.ils are processed to indicate that there are two intervals inside the
difference o.bject. The first hit for £ > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals.
When the.ﬁrst hitpoint is determined, the material property and surface normal is
Fhat associated with the hitpoint, In addition, you must pay attention to precision
issues because there is nothing to prevent the user from taking two objects that

?but and taking fm intersection.  This can be made robust by eliminating any
interval whose thickness is below a certain tolerance.

13.4  Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated using distribution ray tracing (Cook et al., 1984). The conventionally
ray-traced images look clean, because everything is crisp; the shadows are per-
fectly sharp, the reflections have no fuzziness. and everything is in perfect focus.
Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter 23), we
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way to
antialias (recall Section 8.3) the image,

COIS
(union)

S-C
(difference)

CcC-S
(difference)

CnxS
(intersection)

Figure 13.6. The basic CSG
operations on a 2D circle and
square.

Y DR

t=0 e

: S

AT

[ S

=0
Figure 13.7. Intervals are

processed to indicate how the
ray hits the composite object.



|

Figure 13.8. A simple
scene rendered with one sam-
ple per pixel (lower left half)
and nine samples per pixel
(upper right half).

Figure 13.9. Sixteen regu-
lar samples for a single pixel.

Figure 13.10. Sixteen
random samples for a single
pixel.

330 13. More Ray Tracing

13.4.1 Antialiasing

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the true
average. If the screen coordinates bounding the pixel are [i, + 1] x [j,7 + 1],
then we can replace the loop:
for each pixel (7, 7) do
¢ij = ray-color(i + 0.5, j + 0.5)

with code that samples on a regular n x n grid of samples within each pixel:
for each pixel (i, j) do
c=0
forp =0ton — 1do
forqg=0ton —1do

c= (_')+ ray-color(i + (p + 0.5) /n, j + (¢ +0.5)/n)
G efn®

This is usually called regular sampling. The 16 sample locations in a pixel for
B = 4 are shown in Figure 13.9. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel at n,n by n,n
resolution and then averaging blocks of 7, by n pixels to getan, byn i ima"ey
One potential problem with taking samples in a regular patt::rn Wig;lin acf’i;‘el
is that regular artifacts such as moiré patterns can arise. These artifacts Canlbe
turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 13.10. This is usually called random sampling and s :‘
s pling and involves jus
for each pixel (7, j) do
ci=0
forp=1to n? do
¢ = c+ ray-color(i + &, j + ¢)
Coeic (g

Here £ is a call that returns a uniform random number
tunately, the noise can be quite objectionable unless n
compromise is to make a hybrid strategy

in the range [0, 1). Unfor-
1any samples are taken. A
that randomly perturbs a regular grid:
for each pixel (i, ) do :

e =10)

forp = 0ton — 1 do



13.4. Distribution Ray Traci
y lracing 834

f‘"'q:()ton—ldo

¢ = ¢ + ray-color(s :
Cij = ¢/n2 y=color(i + (p + &) /n, j + (g + &) /n)

That method is us S
sually called Jittering or stratified sampling (Figure 13.11).

13.4.2 Soft Shadows

The reason shadow
e S soi\rgilacrt(iiot:s l::;d::r eirlhstz?nc%ard ray .tracing'is Fh.at lights are
life, lights have nonzero area ang can th us elt.her v1§1l.)le or m.v1'51ble.. In real
in 2D in Figure 13.12. The reet an thus be pa.mally visible. This idea is shown
i umbra, The partially visibion V\./herc.a the light is entirely invisible is called
commonly used term for the\ s regIOI'I‘IS called the penumbra. There is not a
anti-umbra. £10n not in shadow, but it is sometimes called the
The key to i .
e ar)e:)r ;:I}:ep:etr:::t;ng §0ft shadows is to somehow account for the light
light with a distributed set (ffmz\nrt A-n eflsy way to do this is to approximate the
of the base light. This conce tA' ' pornt lights each with one Nth of the intensity
S ptis illustrated at the left of Figure 13.13 where nine
i;g}:; j;?ti:::dozo,u. ca'm do this in a standard ray tracer, an:i it is a common trick
/':h tfm té st - fmv Off‘the-shelf' renderer. There are two potential problems
“'1 s technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the prOOrar;l a great deal. The second
probk.em ls that the shadows have sharp transitions Tnside t;e penuml.)ra. ‘
Dlstrlt?utlon ray.tracing introduces a small change in the shadowing code
- Ot. representing the area light at a discrete nmeer of point sourges we;
represent it as an infinite number and choose one at random for each viewino.ray
s ellmounts to choosing a random point on the light for any surface point ;einc;
lit as is shown at the right of Figure 13.13. & y surface p g
If the light is a parallelogram specified by a corner point ¢ and two edge
vectors a and b (Figure 13.14), then choosing a random point r is straightforwarcd:

r=c+§a+ &b,

where &; and &, are uniform random numbers in the range [0,1)

We then send a shadow ray to this point as shown at ;hc right in Figure 13.13.
Note that the direction of this ray is not unit length, whichk may rc:luirc son;e
modification to your basic ray tracer depending upon its ;1ssumpli;ms.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always h;;\'c the

& ° )

Figure 13.11. Sixteen strat-
ified (jittered) samples for a
single pixel shown with and
without the bins highlighted.
There is exactly one random
sample taken within each bin.

Light

Intensity on ground plane

Figure 13.12. A soft
shadow has a gradual transi-
tion from the unshadowed to
shadowed region. The tran-
sition zone is the “penumbra”
denoted by p in the figure.



Figure 13.14.  The geom-
etry of a parallelogram light
specified by a corner point and
two edge vectors.

332 13. More Ray Tracing

Area
light
@,
9

Figure 13.13. Left: an area light can be approximated by some number of point lights; four of the
ghts;

nine points are visible to p so it is in the penumbra. Right: a ra i ight i
! : - Right: a random point on the | n for
the shadow ray, and it has some chance of hitting the light or not. g il e 1O

ray in the upper left-hand corner of the pixel generate a shadow ray to the upper
left-hand corner of the light. Instead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered l;ut SO
that there is no correlation between pixel samples and light samples. A go’od way

to accomplish this is to generate two distinct sets of 7,2 Jittered samples and pass
samples into the light source routine:

for each pixel (7, j) do
c=0
generate N' = n? jittered 2D points and store in array r[ |
generate N = n? jittered 2D points and store in :
shuffle the points in array s|]|
forp=0to N —1do

cijc:cj ;\L; ray-color(i + r{p]-x(), j + r{p].y(), s[p))

array s |

This shuffle routine eliminates any coherence between arrays d
: B : |
routine will just use the 2D random point stored in s[p] );athzn thb‘
r tha

landom I‘lumber generator. A Shufﬂe rout.“e ‘()
1 t ran arra ]
A lnde
o y Xed frO

The shadow
n calling the
mOtoN —1

for: = N — 1 downto | do

choose random integer j between () and ¢ inclusiv
swap array elements ¢ and j e

13.4.3 Depth of Field

The soft focus effects seen in most photos can be simulated b
ate

at a nonzero size “lens” rather than at a point. Thig i called A
N K e

depth of field. The



13.4. Distribution R :
ay Tracmg 333

lens collects light f;
‘ - e M s !
S iff() C n;a cone of directions that has its apex at a distance where
g I cus (Fieure i
iy (Figure 13,1 S). We can place the “window” we are sampling
R
erything is in focus (rather than at the = = n plane as we did

reviously) and the ; -
P e {cns at the eye. The distance to the plane where everything is
in § call the focus plane, and the dist

distance to the focus plane in real ¢
To be most faithful to
we will get very simi]

ance to it is set by the user, just as the
amera is set by the user or range finder.

afeal camera, we should make the lens a disk. However,
o thca; Cifc'cts with a square lens (Figure 13.16). So we choose
o ens and take random samples on it. The origin of the
VIeW r'ays W‘u bcl these perturbed positions rather than the eye position. Again, a
shuffling routine is used to prevent correlation with the pixel sample positions. An

' le using 25 g e :
example using 25 samples per pixel and a large disk lens is shown in Figure 13.17.

13.4.4 Glossy Reflection

Some surfaces, su 5 i i
ch as brushed metal, are somewhere between an ideal mirror

d a diffuse s e et o : ! )
an surface. Some discernible Image is visible in the reflection, but it

i rred. an si I :
is blurred. We .Cdn.SImulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 13.18.

Only two details need to be worked out: how

to choose the vector r’ and what
to do when the resulting perturbed r

ay is below the surface from which the ray is

Figure 13.17. Anexample of depth of f tic in

i the shadow of the wine glass is computed
using particle tracing as described in C!

Lens
Focus
plane
Figure 13.15. The lens

averages over a cone of
directions that hit the pixel
location being sampled.

Figure 13.16. To create
depth-of-field effects, the eye
is randomly selected from a
square region.



334 13. More Ray Tracing

reflected. The latter detail is usually settled by returning a zero color when the

n
r . ~
\\i ray is below the surface.
r' d To choose r’, we again sample a random square. This square is perpendicular
6(6

to r and has width a which controls the degree of blur. We can set up the square’s

orientation by creating an orthonormal basis with w = r using the techniques in
Figure 13.18.  The reflec- Section 2.4.6. Th srbiled int in the 2D s il h
tion ray is perturbed to a ran- ection 2.4.6. Then, we create a ranc om point in the 2D square with side lengt
dom vector r’. a centered at the origin. If we have 2D sample points (£,¢") € [0, 1]2, then the
analogous point on the desired square is

a
U= ~3 + &a,
a ;
—5 + £ a.
Because the square over which we will perturb is parallel to both the u and v
vectors, the ray r’ is just

/
r =r-+uu-+ vv.

Note that r’ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

13.4.5 Motion Blur

We can add a blurred appearance to objects as shown in Fieure 13.19. This is
called motion blur and is the result of the image being formed over a nonzero

Figure 13.19. The bottom right sphere is in motion, and a blurred aar @
courtesy Chad Barb urred appearance results. /mage



13.4. Distribution Ray Tracing ¥

span of time. In a real camera. the
which objects move. We can simul
ranging from T to 7. For e

aperture is open for some time interval during
ate the open aperture by setting a time variable
ach viewing ray we choose a random time,

T'=T,+ &(11 = Tp).

We may also need to create some objects to move with time. For example, we
might have a moving sphere whose center travels from ¢ to ¢; during the interval.
Given T', we could compute the actual center and do a ray—intersection with that
sphere.. Because each ray is sent at a different time, each will encounter the sphere
at a different position, and the final appearance will be blurred. Note that the

bounding box for tl.Ie moving sphere should bound its entire path so an efficiency
structure can be built for the whole time interval (Glassner, 1988).

Notes

There are many, many other advanced methods that can be implemented in the
ray-tracm.g framework. Some resources for further information are Glassner’s An
Introduction to Ray Tracing and Principles of Digital Image Synthesis, Shirley’s

Realistic Ray Tracing, and Pharr and Humphreys’s Physically Based Rendering:
From Theory to Implementation.

Frequently Asked Questions

e What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), uni-
form subdivision grids, and bounding volume hierarchies. Most people who use
BSP trees make the splitting planes axis-aligned, and such trees are usually called
k-d trees. There is no clear-cut answer for which is best, but all are much, much
better than brute-force search in practice. If I were to implement only one, it
would be the bounding volume hierarchy because of its simplicity and robustness.

e Why do people use bounding boxes rather than spheres or ellipsoids?
Sometimes spheres or ellipsoids are better. However, many models have polyg-

onal elements that are tightly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.



