
IMPRESSIONIST
HELP SESSION

IMPRESSIONIST

OUTLINE

▸ Skeleton Code

▸ OpenGL

▸ Qt

▸ Debugging Hints

▸ Project requirements
▸ Brushes

▸ Alpha Blending

▸ Filter Kernel

▸ Mean Bilateral Filter

▸ Git Tutorial

IMPRESSIONIST

GETTING STARTED

▸ Clone the Impressionist skeleton code
▸ git clone git@gitlab.cs.washington.edu:csep557-19sp-

impressionist/YOUR_REPO.git impressionist

▸ Install Qt Creator (if working on your own machine)
▸ www.qt.io/download > Go Open Source

▸ On Windows, first install the MSVC C++ compiler

▸ Installing Visual Studio (not Visual Studio Code) with C++ support
enabled will do this

▸ In Qt Creator, “Open Existing Project” and open Impressionist.pro

http://www.qt.io/download
https://visualstudio.microsoft.com/

SKELETON CODE

SKELETON CODE

SKELETON CODE

mainwindow
The data/information about
brushes, filters, and paint views

forms
Dialog boxes/forms for brushes
filters, and paint views, etc.

lineBrushscatteredPointBrush circleBrushpointBrush scatteredLineBrushscatteredCircleBrush

paintview filter brush

SKELETON CODE

FILES

▸ mainwindow.[h|cpp]

▸ Handles all of the document related items like loading and saving, selecting brushes, and
applying filters

▸ forms/

▸ Various UI components (the main window, brush & kernel dialog boxes, etc…)

▸ paintview.[h|cpp]

▸ Handles the original image side of the window (left side) and the drawing side of the window
the user paints on (right side)

▸ brush.[h|cpp]

▸ The virtual class all brushes are derived from

▸ pointbrush.[h|cpp]

▸ An example brush that draws square points

OPENGL

OPENGL

▸ Good(ish) environment for PC 2d/3d graphics applications

▸ Extremely well documented… well not really!
▸ Lots of beginner tutorials online (like learnopengl.com)

▸ www.khronos.org/opengl/wiki/

▸ Keys to understanding how OpenGL works

▸ But sometimes has unfinished pages

▸ We will be using it throughout the quarter

▸ This project uses the basics of OpenGL
▸ Although you’re welcome to learn more on your own (and we encourage

this), the focus of this project is on 2d image manipulation

http://learnopengl.com
http://www.khronos.org/opengl/wiki/

OPENGL

HOW OPENGL WORKS

▸ OpenGL draws primitives - lines, vertices, or polygons -
subject to many selectable modes

▸ It can be modeled as a state machine
▸ Once a mode is set, it stays there until turned off

▸ It is procedural - commands are executed in the order they
are specified

Bad!

OPENGL

DRAWING A POLYGON
// Let’s draw a filled triangle!
// first, set your color
glm::vec4 color;
color.r = red;
color.g = green;
Color.b = blue;
// set the vertices
std::vector<Glfloat> vertex = {

Ax, Ay,
Bx, By,
Cx, Cy

};
// send the vertex data to the GPU buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vertex.size(),

vertex.data(), GL_STREAM_DRAW);
// Draw polygon
glDrawArrays(GL_TRIANGLES, 0, 3);

Bad!

OPENGL

DRAWING A POLYGON

▸ A lot going on behind the scenes

▸ There is a lot of prep code needed to draw
▸ We need to create a vertex array object that records all the

state needed to draw a brush, bound every time we draw
▸ We need to create a vertex buffer object to hold the

vertex positions and specify the format of the vertex
data(GL_LINES, GL_TRIANGLES, GL_QUADS, … and many
more!)

▸ We need to create a shader program (we did this for you)

Bad!

QT

QT

▸ Enables developers to develop applications with intuitive user interfaces for
multiple targets, faster than from scratch

▸ It’s a cross-platform GUI toolkit

▸ We needed a windowing toolkit to handle window/rendering context
creation for OpenGL since we don’t want to do that ourselves

▸ FLTK (what we used to use) is lightweight, but has sparse features that don’t
play as well with nicer, newer hardware

▸ Event-Driven (via callbacks as slot and signal pairings)

▸ QtCreator IDE - installed with Qt

▸ mainwindow.cpp has several widget examples

Bad!

QT

Bad!

QT

DEBUGGING
▸ Debugging in Qt

▸ Use Qt’s built-in debugger (works just like VS, Eclipse, or just about any IDE you’ve used).

▸ Print out debugging info

▸ #include <QDebug>

▸ Use qDebug() when you want to display information

▸ qDebug() << “debugging info: “ << debugInfo;

▸ Rebuild the project

▸ Clean → Make → Build the Project

▸ Debugging OpenGL

▸ It might help to check for errors after each call. When it seems like nothing is happening, OpenGL is often
returning an error message somewhere along the line.

▸ #include <glinclude.h>

▸ Use GLCheckError();

Bad!

REQUIREMENTS

REQUIREMENTS

BRUSHES

▸ Let’s make a triangle brush! (this will of course NOT count
towards extra credit)

▸ Make a copy of pointbrush.[h|cpp] and rename to
trianglebrush.[h|cpp]
▸ Right-click pointbrush.h/cpp -> Duplicate File…

▸ Right-click pointbrush_copy.[h|cpp] -> Rename…

▸ Rename to “trianglebrush.[h|cpp]”

▸ They should show up as part of the impressionist project

▸ Go through the trianglebrush.[h|cpp] code and change
all pointbrush labels to trianglebrush labels

REQUIREMENTS

BRUSHES, CONT’D

▸ Go to brush.h and add Triangle to the Brushes enum
class

▸ Open forms/brushdialog.cpp, add “brushes/
trianglebrush.h” to the includes. Scroll down a bit, and
add the triangle brush to the selectable brushes.

REQUIREMENTS

BRUSHES, CONT’D

▸ Modify the BrushMove method to draw a triangle instead of a point in
trianglebrush.cpp

int size = GetSize();
std::vector<Glfloat> vertex = {

pos.x - (size * 0.5f), pos.y + (size * 0.5f),
pos.x + (size * 0.5f), pos.y + (size * 0.5f),
pos.x, pos.y - (size * 0.5f)

};

glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vertex.size(),
vertex.data(), GL_STREAM_DRAW);

glDrawArrays(GL_TRIANGLES, 0, 3);

REQUIREMENTS

EDGE DETECTION & GRADIENTS

▸ The gradient is a vector that points in the direction of maximum
increase of f

▸ Use the sobel operator

rf = @f
@x x̂+ @f

@y ŷ

✓ = atan2
⇣

@f
@y ,

@f
@x

⌘

REQUIREMENTS

ALPHA BLENDING

▸ A weighted average of two colors:

▸ Suppose

▸ Then

Fnew = ↵C + (1� ↵)Fold

↵ = 0.5 C =

2

664

255
255
255
255

3

775 Fold =

2

664

255
0
0
128

3

775

Fnew = 0.5

2

664

255
255
255
255

3

775+ (1� 0.5)

2

664

255
0
0
128

3

775 =

2

664

128
128
128
128

3

775+

2

664

128
0
0
64

3

775 =

2

664

255
128
128
192

3

775?

REQUIREMENTS

ALPHA BLENDING

▸ A weighted average of two colors:

▸ Suppose

▸ Then

Fnew = ↵C + (1� ↵)Fold

↵ = 0.5 C =

2

664

255
255
255
255

3

775 Fold =

2

664

255
0
0
128

3

775

Fnew = 0.5

2

664

255
255
255
255

3

775+ (1� 0.5)

2

664

255
0
0
128

3

775 =

2

664

128
128
128
128

3

775+

2

664

128
0
0
64

3

775 =

2

664

255
128
128
192

3

775

REQUIREMENTS

FILTERS

▸ Remember how filter kernels are applied to an image

▸ Look at the sample solution. How does it apply a filter?

▸ What could go wrong?

▸ What cases do you need to handle?

▸ We will be looking closely at your filter kernel

REQUIREMENTS

USE GIMP/PHOTOSHOP TO SEE FILTERS IN ACTION

REQUIREMENTS

3X3 MEAN BOX FILTER

ARTIFACTS

ARTIFACTS

EVERY PROJECT HAS AN ARTIFACT

▸ Individual (except for final project)

▸ Due after the project

▸ Showcase the tool you built

▸ A good place to demonstrate any bells
and whistles you implemented

▸ In-class voting to determine the best

▸ Winner gets extra credit!

GIT TUTORIAL

GIT TUTORIAL

RESOURCES
▸ Basics for this course:

▸ https://courses.cs.washington.edu/courses/csep557/19sp/src/
help.php

▸ Official documentation:

▸ https://git-scm.com/book/en/v2

▸ git —help <command>

http://courses.cs.washington.edu/courses/csep557/19sp/src/help.php
http://courses.cs.washington.edu/courses/csep557/19sp/src/help.php
https://git-scm.com/book/en/v2

GIT TUTORIAL

WORKFLOW
▸ Starting

▸ Navigate to the directory you want to work in and run  
$ git clone git@gitlab.cs.washington.edu:csep557-19sp-
impressionist/YOUR_REPO.git impressionist

▸ This clones your repository into a working directory named “impressionist”

▸ Working

▸ You will want to periodically check your code in, either to avoid disaster or to
rollback broken code to an earlier working version. Run: 
 $ git add -all  
 $ git commit -m “added a triangle brush” 
 $ git push

▸ If you made any changes remotely, run 
 $ git pull

GIT TUTORIAL

SUBMITTING
▸ Build your executable in Release Mode and test it

▸ Be sure to have everything properly committed and pushed to your
Gitlab repository first 
 $ git status  
 On branch master? 
 Your branch is up-to-date with “origin/master”? 
 Nothing to commit, working directory clean?

▸ Tag it

▸ $ git tag SUBMIT  
$ git push -tags

▸ Clone your tagged repo into a SEPARATE directory and test running the program

GOOD LUCK
THE END

