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Reading

Foley et al., 16.12

Optional:
• Glassner, An introduction to Ray Tracing, Academic Press, 

Chapter 1.
• T. Whitted. “An improved illumination model for shaded

display”. Communications of the ACM 23(6), 343-349, 
1980.
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Geometric optics
We will take the view of  geometric optics
• Light is a flow of photons with wavelengths.  We'll call 

these flows ``light rays.''
• Light rays travel in straight lines in free space.
• Light rays do not interfere with each other as they cross.
• Light rays obey the laws of reflection and refraction.
• Light rays travel form the light sources to the eye, but the 

physics is invariant under path reversal (reciprocity).
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Forward Ray Tracing
• Rays emanate from light sources and bounce around in the scene.
• Rays that pass through the projection plane and enter the eye 

contribute to the final image.

• What’s wrong with this method?
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Eye vs. Light
• Starting at the light (a.k.a. forward ray tracing, photon 

tracing)

• Starting at the eye (a.k.a. backward ray tracing)
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Whitted ray-tracing algorithm 
1. For each pixel, trace a primary ray to the first visible 

surface
2. For each intersection trace secondary rays:

– Shadow rays in directions Li to light sources
– Reflected ray in direction R
– Refracted ray (transmitted ray) in direction T



7

Reflection
• Reflected light from objects behaves like specular reflection from light 

sources
– Reflectivity is just specular color
– Reflected light comes from direction of perfect specular reflection

• Is this model reasonable?
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Refraction

• Amount to transmit determined by transparency 
coefficient, which we store explicitly

• T comes from Snell’s law

sin( ) sin( )i i t th q h q=
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Total Internal Reflection
• When passing from a dense medium to a less dense 

medium, light is bent further away from the surface normal
• Eventually, it can bend right past the surface!
• The qi that causes qt to exceed 90 degrees is called the 

critical angle (qc).  For qi greater than the critical angle, no 
light is transmitted.

• A check for TIR falls out of the construction of T

cq
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Index of Refraction
• Real-world index of refraction is a complicated physical property of 

the material

• IOR also varies with wavelength, and even temperature!
• How can we account for wavelength dependence when ray tracing?



11

Stages of Whitted ray-tracing
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The Ray Tree
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Shading
If I(P0, u) is the intensity seen from point P0 along direction u

where
Idirect = Shade(N, L, u, R) (e.g. Phong shading model)

Typically, we set kr = ks and kt = 1 – ks .  
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Parts of a Ray Tracer
• What major components make up the core of a ray tracer?

– Outer loop sends primary rays into the scene
– Trace arbitrary ray and compute its color contribution as it travels 

through the scene
– Shading model

( ) ( ) ( )e
sna a si ili d

i
I k k I f d I k k+ +

é ù+ ê úë û
= + × + ×å N L V R



15

Outer Loop

void traceImage (scene)

{

for each pixel (i,j) in the image {

p = pixelToWorld(i,j)
c = COP

u = (p - c)/||p – c||

I(i,j) = traceRay (scene, c, u)

}

}
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Trace Pseudocode
color traceRay(point P0, direction u )

{

(P,Oi) = intersect( P0, u);

I = 0

for each light source l {

(P’, LightObj) = intersect(P, dir(P,l))

if LightObj = l {

I = I + I(l)

}

}

I = I + Obj.Kr * traceRay(P, R)

I = I + Obj.Kt * traceRay(P, T)

return I

}

Ojl
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TraceRay Pseudocode
function traceRay(scene, P0, u) {

(t, P, N, obj)  ¬ scene.intersect (P0, u)

I = shade( u, N, scene )

R = reflectDirection( u, N )

I ¬ I + obj.kr * traceRay(scene, P, R)

if ray is entering object {

(ni, nt) ¬ (index_of_air, obj.index)

} else {

(ni, nt) ¬ (obj.index, index_of_air)

}

if (notTIR ( u, N, ni, nt ) {

T = refractDirection ( u, N, ni, nt )

I ¬ I + obj.kt * traceRay(scene, P, T)

}

return I

}

obj

�
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Controlling Tree Depth
• Ideally, we’d spawn child rays at every object intersection 

forever, getting a “perfect” color for the primary ray.
• In practice, we need heuristics for bounding the depth of 

the tree (i.e., recursion depth)
• ?
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Shading Pseudocode
function shade(obj, scene, P, N, u) {

I ¬ obj.ke + obj. ka * scene->Ia
for each light source � {

atten = distanceAttenuation(�, P) *

shadowAttenuation(�, Scene, P)

I ¬ I + atten*(diffuse term + spec term)

}

return I

}

obj

�
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obj

�

Shadow attenuation pseudocode
Check to see if a ray makes it to the light source.  
function shadowAttenuation(�, scene, P) {

d = (�.position - P).normalize()

(t, Pl, N, obj) ¬ scene.intersect(P, d)

if Pl is before the light source {

atten = 0

} else {

atten = 1

}

return atten

}

Q: What if there are transparent objects along a path to the light 
source?
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Ray-Object Intersection
• Must define different intersection routine for each 

primitive
• The bottleneck of the ray tracer, so make it fast!
• Most general formulation: find all roots of a function of 

one variable
• In practice, many optimized intersection tests exist (see 

Glassner)
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Ray-Sphere Intersection

• Given a sphere centered at Pc =[0,0,0] with radius r and a 
ray P(t) = P0 + tu, find the intersection(s) of P(t) with the 
sphere.
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Object hierarchies and 
ray intersection

How do we intersect with primitives transformed with affine 
transformations?
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Numerical Error
• Floating-point roundoff can add up in a ray tracer, and 

create unwanted artifacts
– Example: intersection point calculated to be ever-so-slightly inside 

the intersecting object.  How does this affect child rays?
• Solutions:

– Perturb child rays
– Use global ray epsilon
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Plane Intersection
• We can write the equation of a plane as:

• The coefficients a, b, and c form a vector 
that is normal to the plane, n = [a b c]T.  
Thus, we can re-write the plane equation 
as:

• We can solve for the intersection parameter 
(and thus the point):

0ax by cz d+ + + =
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Ray-Polymesh Intersection

1. Use bounding sphere for fast failure
2. Test only front-facing polygons
3. Intersect ray with each polygon’s supporting plane
4. Use a point-in-polygon test
5. Intersection point is smallest t
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Axis-Aligned Cube Intersection

• for each pair of parallel planes, compute t intersection values for both
• Let tnear be the smaller, tfar be the larger
• let t1 = largest tnear, t2 = smallest tfar

• ray intersections cube if  t1 <= t2

• intersection point given by t1

p
tnear

tfar

p
tneartfar
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Goodies
• There are some advanced ray tracing feature that self-

respecting ray tracers shouldn’t be caught without:
– Acceleration techniques
– Antialiasing
– CSG
– Distribution ray tracing
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Acceleration Techniques
• Problem: ray-object intersection is very expensive

– make intersection tests faster
– do fewer tests
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Fast Failure
• We can greatly speed up ray-object intersection by identifying cheap 

tests that guarantee failure
• Example: if origin of ray is outside sphere and ray points away from 

sphere, fail immediately.

• Many other fast failure conditions are possible!
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Hierarchical Bounding Volumes

• Arrange scene into a tree
– Interior nodes contain primitives with very simple intersection tests (e.g., 

spheres).  Each node’s volume contains all objects in subtree
– Leaf nodes contain original geometry

• Like BSP trees, the potential benefits are big but the hierarchy is hard 
to build

Intersect with largest
bounding volume

The intersect with children

Eventually, intersect with primitives
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Spatial Subdivision

• Divide up space and record what objects are in each cell
• Trace ray through voxel array

Uniform subdivision
in 3D

Uniform subdivision
in 2D

Quadtree

Octree
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Antialiasing
• So far, we have traced one ray through each pixel in the 

final image.  Is this an adequate description of the contents 
of the pixel?

• This quantization through inadequate sampling is a form of 
aliasing.  Aliasing is visible as “jaggies” in the ray-traced 
image.

• We really need to colour the pixel based on the average 
colour of the square it defines.
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Aliasing
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Supersampling
• We can approximate the average colour of a pixel’s area by 

firing multiple rays and averaging the result. 
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Adaptive Sampling
• Uniform supersampling can be wasteful if large parts of the pixel don’t 

change much.
• So we can subdivide regions of the pixel’s area only when the image 

changes in that area:

• How do we decide when to subdivide?



37

CSG
• CSG (constructive solid geometry) is an incredibly powerful way to 

create complex scenes from simple primitives.

• CSG is a modeling technique; basically, we only need to modify ray-
object intersection.
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CSG Implementation
• CSG intersections can be analyzed using “Roth diagrams”.

– Maintain description of all intersections of ray with primitive
– Functions to combine Roth diagrams under CSG operations

• An elegant and extremely slow system
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Distribution Ray Tracing
• Usually known as “distributed ray tracing”, but it has nothing to do 

with distributed computing
• General idea: instead of firing one ray, fire multiple rays in a jittered 

grid

• Distributing over different dimensions gives different effects
• Example: what if we distribute rays over pixel area?
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Noise

•Noise can be thought of as randomness added to the signal.
•The eye is relatively insensitive to noise.
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DRT pseudocode
traceImage() looks basically the same, except now each pixel records the 
average color of jittered sub-pixel rays.

function traceImage (scene):
for each pixel (i, j) in image do

I(i, j) ¬ 0
for each sub-pixel id in (i,j) do

s ¬ pixelToWorld(jitter(i, j, id))
p ¬ COP
u ¬(s - p).normalize()
I(i, j) ¬ I(i, j) + traceRay(scene, p, u, id)

end for
I(i, j) ß I(i, j)/numSubPixels

end for
end function

•A typical choice is numSubPixels = 4*4.
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DRT pseudocode (cont’d)
•Now consider traceRay(), modified to handle (only) opaque 
glossy surfaces:

function traceRay(scene, p, u, id):
(q, N, obj)  ¬ intersect (scene, p, u)
I ¬ shade(…)
R ¬ jitteredReflectDirection(N, -u, id)
I ¬ I + obj.kr * traceRay(scene, q, R, id)
return I
end function
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Pre-sampling glossy reflections
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Distributing Reflections
• Distributing rays over 

reflection direction gives:
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Distributing Refractions
• Distributing rays over transmission direction gives:
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Distributing Over Light Area
• Distributing over light 

area gives:
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Distributing Over Aperature
• We can fake distribution through a lens by choosing a 

point on a finite aperature and tracing through the “in-
focus point”.

• What does this simulate?
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Distributing Over Time
• We can endow models with velocity vectors and distribute 

rays over time.  this gives:
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• In general, you can trace rays through a scene and keep 
track of their id’s to handle all of these effects:

Chaining the ray id’s
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Radiosity
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Raytracing v.s. Radiosity

Direct lighting Direct lighting+ interreflection



53

Raytracing v.s. Radiosity

Direct lighting Direct lighting+ interreflection
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Photon Mapping


