Ray Tracer

CSEP557 2019 Spring



Ray Tracer

* Given a ray “caster”, you have to implement:
* Shading
 Reflection and Refraction
* Sphere Intersection

* Triangle Intersection
* Complex objects consist of a 3D mesh made up of triangles

* Anti-Aliasing

* In this project, you will implement all of these!



Requirements

* Sphere intersection

e Triangle intersection

* Barycentric interpolation of Normals and UVs (for
Trimesh)

* Blinn-Phong Specular-Reflection Shading Model
* Light Contribution

* Shadow attenuation

* Reflection

e Refraction

* Anti-Aliasing



The Debugger Tool

* Click a pixel in your rendered frame, and observe

the scene view in the Ul, it will show
 Reflection Rays (if happened)
e Refraction Rays (if happened)
* Normal (at the intersection points)
» Shadow/Light rays (intersection point to the light
source)
* COP ray (intersection point to the COP)



The Debugger Tool

* Demo



eeeee

2) Observe scene view




Requirement: Sphere Intersection

* Fill in Sphere::IntersectlLocal in
scene\components\sphere.cpp

*The sphere is centered at the origin with radius

* If the ray r intersects this sphere:
1) Put the hit parameterini.t
2) Putthe normalini.normal
3) Put the texture coordinates in i.uv (Not a Requirement;
You will get 1 whistle if you implement this)
4) Return true



Requirement: Triangle Intersection

* Fill in TriangleFace::IntersectLocal in
Scene\components\triangleface.cpp

*See the to get all
equations you need.


https://courses.cs.washington.edu/courses/csep557/handouts/triangle_intersection.pdf

Requirement: Triangle Intersection

* Access triangle vertices (class members)
* glm::dvec3 a, b, c

* Interpolate normal and UV
* Barycentric interpolation

*If the ray r intersects this sphere:
1) Put the hit parameter ini.t

2) Putthe normalini.normal

3) Put the texture coordinates ini.uv
4) Return true



Requirement: Blinn-Phong
Specular-Reflection Model

* Refer to the lecture slides to get the formula

Ldirect = ke + Z kalLa,j + A;hadow‘q}lmf L,jBj (A’—'d(N -L;) 4+ ks(IN - HJ):-)
J

. 1
fl;-hbt = Imin 1, —
= (.Lj 7 j - [)J'I j + (_fj



Requirement: Light Contributions

* To sum over the light sources, use a for loop to iterate
all light sources as described in the code

* Access the light
* Light* scene_light = trace_light->light
* Determine the type of light

* Use dynamic casting

if (PointLight* point_light = dynamic_cast<PointLight*>(scene_light)) {

} else if (DirectionallLight* directional_light = dynamic_cast<DirectionalLight*>(scene_light)) {

l



Requirement: Light Contributions

* For Point Light: Get Light Position
* TracelLight::GetTransformPos()

* For Directional Light: Get Light Direction

* Tracelight::GetTransformDirection



Requirement: Light Contributions

* For Point Light:
* Consider Distance Attenuation

* First, check if the light type is AttenuatinglLight

if (AttenuatingLight* attenuating_light = dynamic_cast<AttenuatingLight*>(scene_light))

* Second, geta, b, and c

a = attenuating_light->AttenA.Get();
b = attenuating_light->AttenB.Get();
c = attenuating_light->AttenC.Get();



Requirement: Shadow Attenuation

e Rather than simply setting the attenuation to
zero if an object blocks the light, accumulate
f’hﬁ product of k_t’s for objects which block the

Ight

* See lecture slides to get more details



Requirement: Reflection

* Modify RayTracer::TraceRay in raytracer.cpp to
implement recursive ray tracing

e Get reflection direction

R=2(V-N)N-V

* Consider Ul setting in your implementation

1T (settings.reflections)

// Put your reflection codes here




Requirement: Refraction

* Apply Snell’s law

e Get refraction direction

_
Tt

cos; =N-V

n

cosf; = /1 —n2(1 — cos? 6;)

T = (ncosf; — cos ;)N —nV

Note that Total Internal Reflection (TIR) occurs when the square root term
above is negative.




Requirement: Refraction

e \Watch out for total internal refraction

* Consider the case when the ray is exiting a material into air
(think about the direction of the normaﬁ

« Consider Ul setting in your implementation

if (settings.refractions)

{

// Put your refraction codes here

}




Direct + Indirect lllumination

 Direct lllumination + Reflection + Refraction

Ltotal = ldirect 'J!' reflectedRay + k"t.ItransmittedR.ay

Use in our case



Requirement: Anti-Aliasing

e Gets rid of jaggies

* Implement using oversampling.
* Equally divide each pixel, trace the ray, and average
the results



Requirement: Anti-Aliasing

* Fill code in Raytracer::ComputePixel(...)

switch (settings.samplecount_mode) {
case Camera: :TRACESAMPLING_CONSTANT:

// Put Your anti-alasing code here
color = SampleCamera(x_corner, y_corner, settings.pixel_size_x, settings.pixel_size_y, debug_camera);

break:*
pDreak

 Get the number of samples you need to shoot in

each pixel
e Settings.constant_samples_per_pixel

e Call SampleCamera() when shooting a ray at
different positions of a pixel.



Data Structure: Ray

e Direction: r.direction
* Position: r.position

e r.at(t) — r.position + (t * r.direction)

e Returns the end position of the ray r after going a distance of
t from its start position



Take Care of Normals

* |Interpolated Normal
* Used for

glm::vec3 N = 1.normal;

* True/Geometric Normal
 Used for , like
entering/leaving a object, computing
reflection/refraction rays

glm: :vec3 GeometricN = 1.GetTrueNormal();




Take Care of Normals

* Flip both (interpolated and true) normals if you are
on the inside of an object, for any shading,
reflection, or refraction.

e As we said before, use to determine if

you’re a on the inside/outside the object (i.e. use the
sign of glm::dot(-r.direction, GeometricN))



Test Your Implementation

» Start from simpler case: assets/trace/simple

Sphere: sphere_xxx.yaml
Trimesh: box_xxx.yaml, cube_xxx.yaml|

* Texture: texture_reflection.yaml
Distance attenuation: box_dist_atten.yaml
Opaque shadow: box_cyl _opaque shadow.yaml
Transparent shadow:

* box_cyl trans_shadow.yaml, cube_transparent.yaml
Reflection

* box_cyl _reflect.yaml, texture_reflection.yaml
Refraction

* box_cyl trans_shadow.yaml, cube transparent.yaml
e cylinder_refract.yaml, sphere_refract.yaml



Test Your Implementation

 Then test more complicated case in
e assets/trace/trimeshes
e assets/trace/more

* |n particular, try
* trimeshes/revolution_ texture.yaml to see your

* more/lecture.yaml to see the effect of

* trimeshes/dragon.yaml to test your



Tips and Tricks

e Don’t write too much code without testing!

* Lots of dependencies, think carefully before writing any
codes

e Use RAY_EPSILON (which is defined as 0.00001) to
account for computer precision error when
checking for intersections

RAY EPSILON

T




Memory Leaks

* A memory leak can (and probably will) ruin your
night hours before your artifact is due

*To test, try to ray trace a complex model (the
dragon) with depth 10, anti-aliasing, HUGE Image

e Cause: not calling free after allocating memory

* Object constructors, vector (array) creation

e Solution: free stuff!

e Call the “delete [object]” on ANYTHING you create that is temporary
* i.e. 3 byte temporary vectors in the rayTrace function

|t is HHGHLY RECOMMENDED you have no memory
EELS



Comparison Tool

 We will be using this tool (link on the course
webpage) to evaluate your solution versus the
sample. So you should check too !!

e See the class announcement letter and course

page for the details
 Will announce this soon ...



That’s all. Good luck!



