
Ray Tracer
CSEP557 2019 Spring



Ray Tracer

•Given a ray “caster”, you have to implement:
• Shading 
• Reflection and Refraction
• Sphere Intersection
• Triangle Intersection

• Complex objects consist of a 3D mesh made up of triangles

• Anti-Aliasing

• In this project, you will implement all of these!



Requirements

• Sphere intersection
• Triangle intersection
•Barycentric interpolation of Normals and UVs (for 

Trimesh)
•Blinn-Phong Specular-Reflection Shading Model
• Light Contribution
• Shadow attenuation
•Reflection
•Refraction
•Anti-Aliasing



The Debugger Tool

•USE THIS, IT WILL SAVE YOUR LIFE!

•Click a pixel in your rendered frame, and observe 
the scene view in the UI, it will show
• Reflection Rays (if happened)
• Refraction Rays (if happened)
• Normal (at the intersection points)
• Shadow/Light rays (intersection point to the light 

source)
• COP ray (intersection point to the COP)



The Debugger Tool

• Demo 



1) Click

2) Observe scene view

COP rayReflection Ray



Requirement: Sphere Intersection

• Fill in Sphere::IntersectLocal in 
scene\components\sphere.cpp

•The sphere is centered at the origin with radius 0.5

• If the ray r intersects this sphere:
1) Put the hit parameter in i.t
2) Put the normal in i.normal
3) Put the texture coordinates in i.uv (Not a Requirement; 

You will get 1 whistle if you implement this)
4) Return true



Requirement: Triangle Intersection

• Fill in TriangleFace::IntersectLocal in 
Scene\components\triangleface.cpp

• See the triangle-intersection handout to get all 
equations you need.

https://courses.cs.washington.edu/courses/csep557/handouts/triangle_intersection.pdf


Requirement: Triangle Intersection

•Access triangle vertices (class members)
• glm::dvec3 a, b, c

• Interpolate normal and UV
• Barycentric interpolation

• If the ray r intersects this sphere:
1) Put the hit parameter in i.t
2) Put the normal in i.normal
3) Put the texture coordinates in i.uv
4) Return true



Requirement: Blinn-Phong 
Specular-Reflection Model

•Refer to the lecture slides to get the formula



Requirement: Light Contributions

•To sum over the light sources, use a for loop to iterate 
all light sources as described in the code

•Access the light

• Light* scene_light = trace_light->light

•Determine the type of light

• Use dynamic casting



Requirement: Light Contributions

• For Point Light: Get Light Position

• TraceLight::GetTransformPos()

• For Directional Light: Get Light Direction

• TraceLight::GetTransformDirection



Requirement: Light Contributions

• For Point Light: 

• Consider Distance Attenuation

• First, check if the light type is AttenuatingLight

• Second, get a, b, and c



Requirement: Shadow Attenuation

• Rather than simply setting the attenuation to 
zero if an object blocks the light, accumulate 
the product of k_t’s for objects which block the 
light

• See lecture slides to get more details 



Requirement: Reflection

•Modify RayTracer::TraceRay in raytracer.cpp to 
implement recursive ray tracing

•Get reflection direction

•Consider UI setting in your implementation
•



Requirement: Refraction

• Apply Snell’s law

• Get refraction direction



Requirement: Refraction

• Watch out for total internal refraction

• Consider the case when the ray is exiting a material into air 
(think about the direction of the normal)

• Consider UI setting in your implementation
•



Direct + Indirect Illumination

• Direct Illumination + Reflection + Refraction

Use Ks (specular coefficients) in our case



Requirement: Anti-Aliasing

• Gets rid of jaggies

• Implement using oversampling.
• Equally divide each pixel, trace the ray, and average 

the results



Requirement: Anti-Aliasing

• Fill code in Raytracer::ComputePixel(...)

• Get the number of samples you need to shoot in 
each pixel
• Settings.constant_samples_per_pixel

• Call SampleCamera() when shooting a ray at 
different positions of a pixel.



Data Structure: Ray

• Direction: r.direction

• Position: r.position

• r.at(t) – r.position + (t * r.direction)
• Returns the end position of the ray r after going a distance of 

t from its start position



Take Care of Normals

• Interpolated Normal
• Used for shading

• True/Geometric Normal
• Used for everything except for shading, like 

entering/leaving a object, computing 
reflection/refraction rays



Take Care of Normals

• Flip both (interpolated and true) normals if you are 
on the inside of an object, for any shading, 
reflection, or refraction.

• As we said before, use True Normal to determine if 
you’re a on the inside/outside the object (i.e. use the 
sign of glm::dot(-r.direction, GeometricN))



Test Your Implementation

• Start from simpler case: assets/trace/simple
• Sphere: sphere_xxx.yaml
• Trimesh: box_xxx.yaml, cube_xxx.yaml

• Texture: texture_reflection.yaml
• Distance attenuation: box_dist_atten.yaml
• Opaque shadow: box_cyl_opaque_shadow.yaml
• Transparent shadow: 

• box_cyl_trans_shadow.yaml, cube_transparent.yaml
• Reflection

• box_cyl_reflect.yaml, texture_reflection.yaml
• Refraction

• box_cyl_trans_shadow.yaml, cube_transparent.yaml
• cylinder_refract.yaml, sphere_refract.yaml



Test Your Implementation

• Then test more complicated case in 
• assets/trace/trimeshes
• assets/trace/more

• In particular, try
• trimeshes/revolution_texture.yaml to see your 

trimesh texture 
• more/lecture.yaml to see the effect of direct 

illumination + reflection + refraction
• trimeshes/dragon.yaml to test your anti-aliasing 



Tips and Tricks

• Don’t write too much code without testing!
• Lots of dependencies, think carefully before writing any 

codes

•Use RAY_EPSILON (which is defined as 0.00001) to 
account for computer precision error when 
checking for intersections

RAY_EPSILON



Memory Leaks

•A memory leak can (and probably will) ruin your 
night hours before your artifact is due

•To test, try to ray trace a complex model (the 
dragon) with depth 10, anti-aliasing, HUGE Image

•Cause: not calling free after allocating memory
• Object constructors, vector (array) creation

• Solution: free stuff!
• Call the “delete [object]” on ANYTHING you create that is temporary

• i.e. 3 byte temporary vectors in the rayTrace function

• It is HIGHLY RECOMMENDED you have no memory 
leaks



Comparison Tool

• We will be using this tool (link on the course 
webpage) to evaluate your solution versus the 
sample. So you should check too !!

• See the class announcement letter and course 
page for the details
• Will announce this soon ...



That’s all. Good luck!


