

Constructing surfaces of revolution

Given: A curve $C(v)$ in the $x y$-plane:

$$
\underline{C(v)}=\left[\begin{array}{c}
C_{x}(v) \\
C_{y}(v) \\
0 \\
1
\end{array}\right]
$$

Let $R_{y}(\theta)$ be a rotation about the y-axis
Find: A surface $S(u, v)$ which is $C(v)$ rotated about the y-axis, where $u, v \in[0,1]$.
Solution: $\quad S(n, v)=R_{y}(2 \pi u) C(v)$

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis
What kinds of shapes can you model this way?

Constructing surfaces of revolution

We can sample in u and v to get a grid of points over the surface.

Suppose we sample

- in v, to give $C[j]$ where $j \in[0 . . M-1]$

- in u, to give rotation angle $\theta[i]=2 \pi i / N$ where $i \in[0 . . N]$
We can now write the surface as:

$$
S[i, j]=R_{y}\left(\frac{2 \pi i}{N}\right) C[j]
$$

How would we turn this into a mesh of triangles? How do we assign per-vertex normals?

Surface normals

Now that we describe the surface as a triangle mesh,
we need to provide surface normals. As weill see later, these normals are important for drawing and shading the surface (ie., for "rendering").

One approach is to compute the normal to each

Per-face normal lead to faceted appearance. We can get better-looking results with per-vertex normal (Ill explain why in the "shading" lecture).

How might we compute per-vertex normals?

Normals on a surface of revolution

We can compute tangents to the curve points in the $x y$-plane:

$$
\begin{aligned}
& \mathbf{T}_{1}[0, j] \approx C[j+1]-C[j] \\
& \mathbf{T}_{2}[0, j]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

to get the normal in that plane:

$$
\begin{aligned}
& \mathbf{T}_{2}[0, j]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \text { the normal in that plane: } \\
& \hat{\mathbf{N}}[0, j]=T_{1}[0, j] \times T_{2}[0, j] / \| T_{1}[\cdots] \times T_{2}[\cdots] \\
& \text { en rotate it around: }
\end{aligned}
$$

and then rotate it around:

$$
\begin{aligned}
& \text { orate it around: } \\
& N
\end{aligned}[i, j]=R\left(\frac{2 \pi i}{N}\right) \hat{N}[0, j]
$$

$$
t \approx Q-P
$$

$$
t=\lim _{Q \rightarrow p} \frac{Q-p}{\|Q-p\|}
$$

Triangle meshes

How should we generally represent triangle
meshes?

Summary

What to take away from this lecture:

- All the names in boldface.
- How to compute a surface of revolution given a profile curve.
- How to represent a surface of revolution as a triangle mesh.
- How to compute per-vertex normals for a surface of revolution

