Subdivision curves and surfaces

Brian Curless
CSEP 557
Spring 2019

Reading

Required:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2, A.5.

Note: there is an error in Stollnitz, et al., section A. 5 Equation A. 3 should read:

$$
\mathbf{M V}=\mathbf{V} \Lambda
$$

This is already fixed in the handout.

Chaikin's algorithm

Chaikin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the "next" (clockwise) neighbor (the averaging step)
- Go to the splitting step

Averaging masks

The limit curve is a quadratic B -spline!
Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step:

$$
a=\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right)
$$

In the case of Chaikin's algorithm:

$$
a=\left(\begin{array}{lll}
0 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Different averaging masks lead to different curves.
For example,

$$
a=\left(\begin{array}{lll}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right)
$$

Leads to cubic B-spline curves.

Building complex models

We can extend the idea of subdivision from curves to surfaces...

Limit curves and evaluation masks

Can we push a curve to the limit position in one step? Yes!!

We can stop after a number of split-average steps and apply an evaluation mask to push the vertices onto the limit curve.
For Chaikin's algorithm, the evaluation masks is: $e=\left(\begin{array}{lll}0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)$
Old vertex New vertex

For cubic subdivision, the evaluation masks is: $e=\left(\begin{array}{lll}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{array}\right)$

Subdivision surfaces

Chaikin's use of subdivision for curves inspired similar techniques for subdivision surfaces.

Iteratively refine a control polyhedron (or control mesh) to produce the limit surface

$$
S=\lim _{j \rightarrow \infty} P_{j}
$$

using splitting and averaging steps.

P_{0}
P_{1}

P_{2}
P_{∞}

Triangular subdivision

There are a variety of ways to subdivide a poylgon mesh.

A common choice for triangle meshes is 4:1 subdivision - each triangular face is split into four smaller triangles:

Original

After splitting

Loop evaluation and tangent masks

As with subdivision curves, we can split and average a number of times and then push the points to their limit positions.

Tangent masks

Evaluation mask
(before affine normalization)

$$
\begin{aligned}
& \mathbf{Q}^{\infty}=\frac{\varepsilon(n) \mathbf{Q}+\mathbf{Q}_{1}+\cdots+\mathbf{Q}_{n}}{\varepsilon(n)+n} \\
& \mathbf{T}_{1}^{\infty}=\tau_{1}(n) \mathbf{Q}_{1}+\tau_{2}(n) \mathbf{Q}_{2}+\cdots+\tau_{n}(n) \mathbf{Q}_{n} \\
& \mathbf{T}_{2}^{\infty}=\tau_{n}(n) \mathbf{Q}_{1}+\tau_{1}(n) \mathbf{Q}_{2}+\cdots+\tau_{n-1}(n) \mathbf{Q}_{n}
\end{aligned}
$$

where

$$
\varepsilon(n)=\frac{3 n}{\beta(n)} \quad \tau_{i}(n)=\cos (2 \pi i / n)
$$

How do we compute the normal? $\quad N \sim T_{1}^{\infty} \times T_{2}^{\infty}$

Adding creases without trim curves

For NURBS surfaces, adding sharp features like creases required the use of trim curves

For subdivision surfaces, we can just modify the subdivision masks. E.g., we can mark some edges and vertices as "creases" and modify the subdivision mask for them (and their children)

This gives rise to G^{0} continuous surfaces (i.e., having
3 positional but not tangent plane continuity).

Creases without trim curves, cont.

Here's an example using Catmull-Clark surfaces (based on subdividing quadrilateral meshes):

This particular example uses the hybrid technique of DeRose, et al., which applies sharp subdivision rules at some creases for a finite number of steps, and then switches to smooth subdivision, giving more gentle creases. This technique was used in Geri's Game.

Catmull-Clark subdivision

4:1 subdivision of triangles is sometimes called a face scheme for subdivision, as each face begets more faces.

An alternative face scheme starts with arbitrary polygon meshes and inserts vertices along edges and at face centroids:

Original

Catmull-Clark subdivision:

Note: after the first subdivision, all polygons are quadilaterals in this scheme.

Summary

What to take home:

- The meanings of all the boldfaced terms
- How to perform the splitting and averaging steps on subdivision curves.
- How to perform mesh splitting steps for subdivision surfaces, especially Loop.
- How to construct and render subdivision surfaces from their averaging masks, evaluation masks, and tangent masks.

