

Basic 3D graphics

With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into a global (world) coordinate system:

To synthesize an image of the scene, we also need to add light sources and a viewer/camera:

Reading

Optional:

- Angel and Shreiner: chapter 5.
- Marschner and Shirley: chapter 10, chapter 17

Further reading

- OpenGL red book, chapter 5

Pinhole camera

To create an image of a virtual scene, we need to define a camera, and we need to model lighting and shading. For the camera, we use a pinhole camera.

The image is rendered onto an image plane (usually in front of the camera).

Viewing rays emanate from the center of projection (COP) at the center of the pinhole.

The image of an object point \mathbf{P} is at the intersection of the viewing ray through \mathbf{P} and the image plane.

But is \mathbf{P} visible? This the problem of hidden surface removal (a.k.a., visible surface determination). We'll consider this problem later.

Shading

Next, we'll need a model to describe how light
interacts with surfaces.
Such a model is called a shading model
Other names:

Light reflection model
Local illumination mode

- Reflectance model
- BRDF

An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is extremely hard.

Look around the room. Each light source has different characteristics. Trillions of photons are pouring out every second.

These photons can:

- interact with molecules and particles in the ai ("participating media")
- strike a surface and
- be absorbed
- be reflected (scattered)
- cause fluorescence or phosphorescence
- interact in a wavelength-dependent manner
- generally bounce around and around

Setup...

Given:

- a point \mathbf{P} on a surface visible through pixel p
- The normal \mathbf{N} at \mathbf{P}
- The lighting direction, \mathbf{L}, and (color) intensity, I_{L}, at \mathbf{P}
- The viewing direction, \mathbf{V}, at \mathbf{P}
- The shading coefficients at \mathbf{P}

Compute the color, I, of pixel p.
Assume that the direction vectors are normalized:

$$
|\mathbb{N}\|=\| L\|\|=\| v \mid=1
$$

"Iteration zero"

The simplest thing you can do is...
Assign each polygon a single color:

$$
I=k_{e}
$$

where

- I is the resulting intensity
- k_{e} is the emissivity or intrinsic shade associated with the object

This has some special-purpose uses, but not really good for drawing a scene

"Iteration one"

Let's make the color at least dependent on the overall quantity of light available in the scene:

$$
I=k_{e}+k_{a} I_{L a}
$$

- k_{a} is the ambient reflection coefficient
- really the reflectance of ambient light
- "ambient" light is assumed to be equal in all directions
- $I_{L a}$ is the ambient light intensity

Physically, what is "ambient" light?
poor parson's interreflection

Diffuse reflectors

Emissive and ambient reflection don't model realistic lighting and reflection. To improve this, we will look at diffuse (a.k.a., Lambertian) reflection.

Diffuse reflection can occur from dull, matte surfaces, like latex paint, or chalk.

These diffuse reflectors reradiate light equally in all directions.

Picture a rough surface with lots of tiny microfacets.

Diffuse reflectors

...or picture a surface with little pigment particles embedded beneath the surface (neglect reflection at the surface for the moment):

The microfacets and pigments distribute light rays in all directions.

Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

Note: the figures in this and the previous slide are intuitive, but not strictly (physically) correct.

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not depend on the direction of the viewer. The incoming light, though, does depend on the direction of the light source:

$$
\begin{aligned}
& \cos \theta=\frac{d A_{p}}{d A} 0^{\prime \prime \prime} \quad B=\left\{\begin{array}{l}
1 \text { it } \cos \theta \geq 0 \\
0 \text { e'se } \\
d A_{P}=d A \cos \theta \\
I \sim B \cdot \cos \theta=B \cdot \hat{X} \cdot \hat{L}
\end{array} \quad . \quad l\right.
\end{aligned}
$$

"Iteration two"

The incoming energy is proportional to $\stackrel{\cos \theta}{ }$, giving the diffuse reflection equations:

$$
\begin{aligned}
I & =k_{e}+k_{a} I_{L a}+k_{d} I_{L} B \cos \theta \\
& =k_{e}+k_{a} I_{L a}+k_{d} I_{L} B(N L)
\end{aligned}
$$

where:

- k_{d} is the diffuse reflection coefficient
- I_{L} is the (color) intensity of the light source
- \mathbf{N} is the normal to the surface (unit vector)
- \mathbf{L} is the direction to the light source (unit vector)
- B prevents contribution of light from below the surface:

$$
B= \begin{cases}1 & \text { if } N \cdot L>0 \\ 0 & \text { if } N \cdot L \leq 0\end{cases}
$$

Specular reflection

Specular reflection accounts for the highlight that you see on some objects.

It is particularly important for smooth, shiny surfaces, such as:

- metal
- polished stone
- plastics
- apples
- skin

Properties:

- Specular reflection depends on the viewing direction \mathbf{V}
- For non-metals, the color is determined solely by the color of the light.
- For metals, the color may be altered (e.g., brass)

Specular reflection "derivation"

For a perfect mirror reflector, light is reflected about \mathbf{N}, so

$$
I=\left\{\begin{array}{cc}
I_{L} & \text { if } \mathbf{V}=\mathbf{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle ϕ.

Also known as:

- "rough specular" reflection
" "directional diffuse" reflection
- "glossy" reflection

Phong specular reflection

$$
\text { goniometric } \begin{gathered}
\text { diagran }
\end{gathered}
$$

为

One way to get this effect is to take (R.V), raised to a power n_{s}.

Phong specular reflection is proportional to:

$$
I_{\text {specular }} \sim B(\mathbf{R} \cdot \mathbf{V})_{+}^{n_{s}^{s}}
$$

where $(x)_{+} \equiv \max (0, x)$.
Q: As n_{s} gets larger does the highlight on a curved surface get smaller or larger?

Blinn-Phong specular reflection

A common alternative for specular reflection is the Blinn-Phong model (sometimes called the modified Phong model.)

We compute the vector halfway between \mathbf{L} and \mathbf{V} as:

$=\frac{L+v}{\|L+V\|}$

Analogous to Phong specular reflection, we can compute the specular contribution in terms of ($\mathbf{N} \cdot \mathbf{H}$), raised to a power n_{s} :

$$
I_{\text {specular }} \sim B(\mathbf{N} \cdot \mathbf{H})_{+}^{n_{s}}
$$

where, again, $(x)_{+} \equiv \max (0, x)$.

Directional lights

The simplest form of lights supported by renderers are ambient, directional, and point. Spotlights are also supported often as a special form of point light.

We've seen ambient light sources, which are not really geometric.

Directional light sources have a single direction and intensity associated with them.
〇ㄴ

Using affine notation, what is the homogeneous coordinate for a directional light?

Point lights

The direction of a point light sources is determined by the vector from the light position to the surface point.

Physics tells us the intensity must drop off inversely with the square of the distance:

$$
f_{\text {atten }}=\frac{1}{r^{2}}
$$

Sometimes, this distance-squared dropoff is considered too "harsh." A common alternative is:

$$
f_{\mathrm{atten}}=\frac{1}{a r^{2}+b r+c}
$$

with user-supplied constants for a, b, and c.
Using affine notation, what is the homogeneous coordinate for a point light?

Spotlights

We can also apply a directional attenuation of a point light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

$$
f_{\text {spot }}=\left\{\begin{array}{cc}
\frac{(\mathbf{L} \cdot \mathbf{S})^{e}}{a r^{2}+b r+c} & \alpha \leq \beta \\
0 & \text { otherwise }
\end{array}\right.
$$

where

- \mathbf{L} is the direction to the point light.
- \mathbf{S} is the center direction of the spotlight.
- α is the angle between \mathbf{L} and \mathbf{S}
- β is the cutoff angle for the spotlight
- e is the angular falloff coefficient

Note: $\alpha \leq \beta \Leftrightarrow \cos ^{-1}(\mathbf{L} \cdot \mathbf{S}) \leq \beta \Leftrightarrow \mathbf{L} \cdot \mathbf{S} \geq \cos \beta$.

> "Iteration four"
> Since light is additive, we can handle multiple lights by taking the sum over every light.

This is the Blinn-Phong illumination model (for spotlights). Note that, in practice, we ursuatly set $k_{a}=k_{d}$.

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

3D Geometry in the
 Graphics Hardware Pipeline

Graphics hardware applies transformations to bring the objects and lighting into the camera's coordinate system:

The geometry is assumed to be made of triangles, and the vertices are projected onto the image plane.

Hardware Pipeline

A vertex shader is run for each vertex, and outputs values to be interpolated across the triangle.

The vertices are grouped into triangles (or other primitives, e.g. lines) to be rasterized. A geometry shader is possibly run to generate more primitives.

We iterate through scanlines, interpolating outputs from the vertex shader at each pixel.

A fragment shader (or pixel shader) is called at each pixel in the primitive, which gets the interpolated values and outputs a final color to the framebuffer

Rasterization

After projecting the vertices, graphics hardware "smears" vertex properties across the interior of the triangle in a process called rasterization.

Smearing the z-values and using a Z-buffer will enable the graphics hardware to determine if a point inside a triangle is visible. (More on this in another lecture.)

If we have stored colors at the vertices, then we can smear these as well.

GLSL: A Simple Vertex Shader

GLSL: A Simple Fragment Shader

in vec3 color;
out vec4 frag_color;

```
void main()
    frag_color = vec4(color, 1.0);

\section*{GLSL: Storage Qualifiers}
uniform: Global value that is the same across all vertices and fragments (for this draw call)

Vertex shader
- in: Per-vertex attributes (that were sent to the GPU)
- out: Values to be interpolated by the rasterizer and then passed to a fragment shader

Fragment shader
- in: Interpolated values of vertex shader out's
- out: Value to be written to frame buffer
uniform's may include model/view/projection matrices, light parameters, material parameters, textures..
in's and out's may include normals, positions, colors, material parameters, texture coordinates..

\section*{Shading the interiors of triangles}

We will be computing colors using the Blinn-Phong lighting model.

Let's assume (as graphics hardware does) that we are working with triangles.

How should we shade the interiors of triangles?
We will consider this over the next few slides...

\section*{Per-face normals for triangle meshes}

We will be shading and calculating reflections and refractions based on surface normals.

For a triangle mesh, we can make the natural assumption that each triangle has a constant normal (the normal of its supporting plane):


Recall the Blinn-Phong shading equation for a single light source (no ambient or emissive):
\[
I=I_{L} B\left[k_{d}(\mathbf{N} \cdot \mathbf{L})+k_{s}(\mathbf{N} \cdot \mathbf{H})_{+}^{n_{s}}\right]
\]

Typically, \(\mathbf{L}\) and \(\mathbf{V}\) vary only a small amount over each triangle, if at all.

Q: If material properties ( \(k_{d}, k_{s}, n_{s}\) ) are constant over the mesh, how will shading vary within a triangle?

\section*{Faceted shading (cont'd)}

[Williams and Siegel 1990]

Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990]

\section*{Gouraud interpolation}

To get a smoother result that is easily performed in hardware, we can do Gouraud interpolation.

\section*{Here's how it works:}
1. Compute normals at the vertices
2. Shade only the vertices
3. Interpolate the resulting vertex colors.


\section*{Gouraud interpolation artifacts}

Gouraud interpolation has significant limitations.
1. If the polygonal approximation is too coarse, we can miss specular highlights.
\[
f(x)-f^{\prime \prime}(x)
\]

2. We will encounter Mach banding (derivative discontinuity enhanced by human eye).


This is what graphics hardware does by default. A substantial improvement is to do...


\section*{Phong interpolation}

To get an even smoother result with fewer artifacts, we can perform Phong interpolation.

Here's how it works:
1. Compute normals at the vertices
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.



\section*{Old pipeline: Gouraud interpolation}


\section*{Gouraud vs. Phong interpolation}

[Williams and Siegel 1990]

\section*{Programmable pipeline: Phong-interpolated normals!}


\section*{Vertex shader}
determine eye, normal, vertex in world coordinates
\(v_{i} \leftarrow\) project \(v\) to image
out eye \({ }_{w}\)
out \(\mathbf{n}_{w}\)
out \(v_{w}\)
out \(v_{i}\)
\(v_{i}^{1}, v_{i}^{2}, v_{i}^{3} \rightarrow\) triangle


Fragment shader:
\(\mathbf{L} \leftarrow\) determine lighting direction (using \(v_{w}^{p}\)
\(\mathbf{V} \leftarrow\) normalize \(\left(v_{w}-v_{e}^{\rho}\right)\)
\(\mathbf{N} \leftarrow\) normalize \(\left(\mathbf{n}_{w}^{p}\right)\)
color \(\leftarrow\) shade with \(\mathbf{L}, \mathbf{V}, \mathbf{N}, k_{d}, k_{s}, n_{s}\)

\section*{Choosing Blinn-Phong shading parameters}

Experiment with different parameter settings. To get you started, here are a few suggestions:
- Try \(n_{s}\) in the range \([0,100]\)
- Try \(k_{a}+k_{d}+k_{s}<1\)
- Use a small \(k_{a}(\sim 0.1)\)
\begin{tabular}{|l|l|l|l|}
\hline & \(n_{s}\) & \(k_{d}\) & \(k_{s}\) \\
\hline Metal & large & \begin{tabular}{l} 
Small, color \\
of metal
\end{tabular} & \begin{tabular}{l} 
Large, color \\
of metal
\end{tabular} \\
\hline Plastic & medium & \begin{tabular}{l} 
Medium, \\
color of \\
plastic
\end{tabular} & \begin{tabular}{l} 
Medium, \\
white
\end{tabular} \\
\hline Planet & 0 & varying & 0 \\
\hline
\end{tabular}

More sophisticated BRDF's

[Cook and Torrance, 1982]


Anisotropic BRDFs [Westin, Arvo, Torrance 1992]


Artistics BRDFs [Gooch]

\section*{BRDF}

For more physical correctness, we would also weight the specular part by \(\mathbf{N} \cdot \mathbf{L}\) :


The function \(f_{r}\) maps incoming (light) directions \(\omega_{\text {in }}\) to outgoing (viewing) directions \(\omega_{\text {out }}\) :
\[
f_{r}\left(\omega_{\text {in }}, \omega_{\text {out }}\right) \quad \text { or } \quad f_{r}\left(\omega_{\text {in }} \rightarrow \omega_{\text {out }}\right)
\]

This function is called the \(\mathbf{B i}\)-directional Reflectance Distribution Function (BRDF).

Here's a plot with \(\omega_{\text {in }}\) held constant:
见


BRDF's can be quite sophisticated. .

More sophisticated BRDF's (cont'd)


Hair illuminated from different angles [Marschner et al., 2003]


Wool cloth and silk cloth [Irawan and Marschner, 2012]


\section*{Summary}

You should understand the equation for the BlinnPhong lighting model described in the "Iteration Four" slide:
- What is the physical meaning of each variable?
- How are the terms computed?
- What effect does each term contribute to the image?
- What does varying the parameters do?

You should also understand the differences between faceted, Gouraud, and Phong interpolated shading.```

