
1

Shading

Brian Curless
CSEP 557

Spring 2019

2

Reading

Optional:

w Angel and Shreiner: chapter 5.
w Marschner and Shirley: chapter 10, chapter 17.

Further reading:
w OpenGL red book, chapter 5.

3

Basic 3D graphics

With affine matrices, we can now transform virtual 3D
objects in their local coordinate systems into a global
(world) coordinate system:

To synthesize an image of the scene, we also need to
add light sources and a viewer/camera:

M1

M2

4

To create an image of a virtual scene, we need to
define a camera, and we need to model lighting and
shading. For the camera, we use a pinhole camera.

The image is rendered onto an image plane (usually
in front of the camera).

Viewing rays emanate from the center of projection
(COP) at the center of the pinhole.

The image of an object point P is at the intersection of
the viewing ray through P and the image plane.

But is P visible? This the problem of hidden surface
removal (a.k.a., visible surface determination). We’ll
consider this problem later.

Pinhole camera

[Angel, 2011]

5

Shading

Next, we’ll need a model to describe how light
interacts with surfaces.

Such a model is called a shading model.

Other names:

w Lighting model
w Light reflection model
w Local illumination model
w Reflectance model
w BRDF

6

An abundance of photons

Given the camera and shading model, properly
determining the right color at each pixel is extremely
hard.

Look around the room. Each light source has different
characteristics. Trillions of photons are pouring out
every second.

These photons can:

w interact with molecules and particles in the air
(“participating media”)

w strike a surface and
• be absorbed
• be reflected (scattered)
• cause fluorescence or phosphorescence.

w interact in a wavelength-dependent manner
w generally bounce around and around

7

Our problem

We’re going to build up to a approximations of reality
called the Phong and Blinn-Phong illumination
models.

They have the following characteristics:

w not physically correct
w gives a “first-order” approximation to physical

light reflection
w very fast
w widely used

In addition, we will assume local illumination, i.e.,
light goes: light source -> surface -> viewer.

No interreflections, no shadows.

8

Setup…

Given:

w a point P on a surface visible through pixel p
w The normal N at P
w The lighting direction, L, and (color) intensity, IL,

at P
w The viewing direction, V, at P
w The shading coefficients at P

Compute the color, I, of pixel p.

Assume that the direction vectors are normalized:

N = L = V =1

9

“Iteration zero”

The simplest thing you can do is…

Assign each polygon a single color:

where

w I is the resulting intensity
w ke is the emissivity or intrinsic shade associated

with the object

This has some special-purpose uses, but not really
good for drawing a scene.

I = ke

10

“Iteration one”

Let’s make the color at least dependent on the overall
quantity of light available in the scene:

w ka is the ambient reflection coefficient.
• really the reflectance of ambient light
• “ambient” light is assumed to be equal in all

directions
w ILa is the ambient light intensity.

Physically, what is “ambient” light?

I = ke + kaILa

11

Wavelength dependence

Really, ke , ka , and ILa are functions over all
wavelengths l.

Ideally, we would do the calculation on these
functions. For the ambient shading equation, we
would start with:

then we would find good RGB values to represent
the spectrum I(l).

Traditionally, though, ka and ILa are represented as
RGB triples, and the computation is performed on
each color channel separately:

I (λ) = ka (λ)ILa (λ)

I R = ka
R ILa

R

IG = ka
G ILa

G

I B = ka
B ILa

B

12

Diffuse reflectors

Emissive and ambient reflection don’t model realistic
lighting and reflection. To improve this, we will look at
diffuse (a.k.a., Lambertian) reflection.

Diffuse reflection can occur from dull, matte surfaces,
like latex paint, or chalk.

These diffuse reflectors reradiate light equally in all
directions.

Picture a rough surface with lots of tiny microfacets.

13

Diffuse reflectors

…or picture a surface with little pigment particles
embedded beneath the surface (neglect reflection at
the surface for the moment):

The microfacets and pigments distribute light rays in
all directions.

Embedded pigments are responsible for the
coloration of diffusely reflected light in plastics and
paints.

Note: the figures in this and the previous slide are
intuitive, but not strictly (physically) correct.

14

Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not
depend on the direction of the viewer. The incoming
light, though, does depend on the direction of the
light source:

15

“Iteration two”

The incoming energy is proportional to , giving
the diffuse reflection equations:

where:

w kd is the diffuse reflection coefficient
w IL is the (color) intensity of the light source
w N is the normal to the surface (unit vector)
w L is the direction to the light source (unit vector)
w B prevents contribution of light from below the

surface:

I = ke + kaILa + kd ILB_____

= ke + kaILa + kd ILB()

B = 1 if N ⋅ L > 0

0 if N ⋅ L ≤ 0

⎧
⎨
⎪

⎩⎪

16

Specular reflection

Specular reflection accounts for the highlight that
you see on some objects.

It is particularly important for smooth, shiny surfaces,
such as:

w metal
w polished stone
w plastics
w apples
w skin

Properties:

w Specular reflection depends on the viewing
direction V.

w For non-metals, the color is determined solely by
the color of the light.

w For metals, the color may be altered (e.g., brass)

17

Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about N,
so

For a near-perfect reflector, you might expect the
highlight to fall off quickly with increasing angle f.

Also known as:

w “rough specular” reflection
w “directional diffuse” reflection
w “glossy” reflection

I = IL if V =R
0 otherwise

⎧
⎨
⎪

⎩⎪

18

Phong specular reflection

One way to get this effect is to take (R·V), raised to a
power ns .

Phong specular reflection is proportional to:

where (x)+ º max(0, x).

Q: As ns gets larger, does the highlight on a curved
surface get smaller or larger?

Ispecular ~ B(R ⋅V)+
n
s

19

Blinn-Phong specular reflection

A common alternative for specular reflection is the
Blinn-Phong model (sometimes called the modified
Phong model.)

We compute the vector halfway between L and V as:

Analogous to Phong specular reflection, we can
compute the specular contribution in terms of (N·H),
raised to a power ns:

where, again, (x)+ º max(0, x).

Ispecular ~ B(N ⋅H)+
n
s

20

“Iteration three”

The next update to the Blinn-Phong shading model is
then:

where:

w ks is the specular reflection coefficient
w ns is the specular exponent or shininess
w H is the unit halfway vector between L and V,

where V is the viewing direction.

I = ke + kaILa + kd ILB(N ⋅L)+ ksILB(N ⋅H)+
n
s

= ke + kaILa + ILB kd (N ⋅L)+ ks (N ⋅H)+
n
s⎡

⎣⎢
⎤
⎦⎥

21

Directional lights

The simplest form of lights supported by renderers are
ambient, directional, and point. Spotlights are also
supported often as a special form of point light.

We’ve seen ambient light sources, which are not really
geometric.

Directional light sources have a single direction and
intensity associated with them.

Using affine notation, what is the homogeneous
coordinate for a directional light?

22

Point lights

The direction of a point light sources is determined by
the vector from the light position to the surface point.

Physics tells us the intensity must drop off inversely
with the square of the distance:

Sometimes, this distance-squared dropoff is
considered too “harsh.” A common alternative is:

with user-supplied constants for a, b, and c.

Using affine notation, what is the homogeneous
coordinate for a point light?

b Jm
i Z

b Jm

ê Z bJm

2atten
1f

ar br c
=

+ +

f
atten

=
1
r2

23

Spotlights
We can also apply a directional attenuation of a point
light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

where

w L is the direction to the point light.
w S is the center direction of the spotlight.
w a is the angle between L and S
w b is the cutoff angle for the spotlight
w e is the angular falloff coefficient

()
2

spot

0 otherwise

e

f ar br c
a b

ì ×
ï £í + +
ï
î

L S
=

Note: α ≤ β ⇔ cos−1(L ⋅S) ≤ β ⇔ L ⋅S ≥ cosβ . 24

“Iteration four”

Since light is additive, we can handle multiple lights by
taking the sum over every light.

Our equation is now (for spotlight lighting):

This is the Blinn-Phong illumination model (for
spotlights). Note that, in practice, we usually set
ka = kd.

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

()
() (), ,2

s

j
j j nj

e a La j L j j d j s j
j j j j j j

e

I k k I I B k k
a r b r c

b
+

×
é ù= + + × + ×ê úë û+ +å

L S
N L N H

25

3D Geometry in the
Graphics Hardware Pipeline
Graphics hardware applies transformations to bring
the objects and lighting into the camera’s coordinate
system:

The geometry is assumed to be made of triangles, and
the vertices are projected onto the image plane.

26

Rasterization

After projecting the vertices, graphics hardware
“smears” vertex properties across the interior of the
triangle in a process called rasterization.

Smearing the z-values and using a Z-buffer will enable
the graphics hardware to determine if a point inside a
triangle is visible. (More on this in another lecture.)

If we have stored colors at the vertices, then we can
smear these as well.

27

Hardware Pipeline

A vertex shader is run for each vertex, and outputs
values to be interpolated across the triangle.

The vertices are grouped into triangles (or other
primitives, e.g. lines) to be rasterized. A geometry
shader is possibly run to generate more primitives.

We iterate through scanlines, interpolating outputs
from the vertex shader at each pixel.

A fragment shader (or pixel shader) is called at each
pixel in the primitive, which gets the interpolated
values and outputs a final color to the framebuffer.

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

28

GLSL: A Simple Vertex Shader

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

in vec3 position;
in vec3 vertex_color;

out vec3 color;

uniform mat4 modelview;
uniform mat4 projection;

void main() {
color = vertex_color;
gl_Position = projection * modelview * vec4(position, 1.0);

}

29

GLSL: A Simple Fragment Shader

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

in vec3 color;

out vec4 frag_color;

void main() {
frag_color = vec4(color, 1.0);

}

30

GLSL: Storage Qualifiers

uniform : Global value that is the same across all vertices and
fragments (for this draw call).

Vertex shader
• in: Per-vertex attributes (that were sent to the GPU)
• out: Values to be interpolated by the rasterizer and

then passed to a fragment shader

Fragment shader
• in: Interpolated values of vertex shader out’s
• out: Value to be written to frame buffer

uniform’s may include model/view/projection matrices, light
parameters, material parameters, textures…

in’s and out’s may include normals, positions, colors, material
parameters, texture coordinates…

31

Shading the interiors of triangles

We will be computing colors using the Blinn-Phong
lighting model.

Let’s assume (as graphics hardware does) that we are
working with triangles.

How should we shade the interiors of triangles?

We will consider this over the next few slides…

32

Per-face normals for triangle meshes
We will be shading and calculating reflections and
refractions based on surface normals.

For a triangle mesh, we can make the natural
assumption that each triangle has a constant normal
(the normal of its supporting plane):

Recall the Blinn-Phong shading equation for a single
light source (no ambient or emissive):

Typically, L and V vary only a small amount over each
triangle, if at all.

Q: If material properties (kd , ks , ns) are constant over
the mesh, how will shading vary within a triangle?

I = ILB kd (N ⋅L)+ ks (N ⋅H)+
n
s⎡

⎣⎢
⎤
⎦⎥

33

Faceted shading (cont’d)

[Williams and Siegel 1990] 34

Gouraud interpolation

To get a smoother result that is easily performed in
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

35

Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990] 36

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we
can miss specular highlights.

2. We will encounter Mach banding (derivative
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…

37

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

38

Gouraud vs. Phong interpolation

[Williams and Siegel 1990]

39

Old pipeline: Gouraud interpolation

Default fragment processing:

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

vi← project v to image
out cblinn-phong
out vi

cblinn-phong ← shade with L,V,N,kd ,ks ,ns

 L← determine lighting direction
V← determine viewing direction

N←normalize(ne)

Default vertex processing:

color← cblinn-phong
p

→ trianglevi
1,vi

2,vi
3

40

Vertex shader:
determine eye, normal, vertex in world coordinates
vi← project v to image
out eyew
out nw
out vw
out vi

Programmable pipeline: Phong-interpolated normals!

→ trianglevi
1,vi

2 ,vi
3

Fragment shader:

color← shade with L,V,N,kd ,ks ,ns

()pw¬N nnormalize

p
wv¬L determine lighting direction (using)

()w
p
ev v¬ -V normalize

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

41

Choosing Blinn-Phong shading parameters

Experiment with different parameter settings. To get
you started, here are a few suggestions:

w Try ns in the range [0, 100]
w Try ka + kd + ks < 1
w Use a small ka (~0.1)

åë âÇ âë

jÉí~ä ä~êÖÉ
pã~ääI=Åçäçê=
çÑ=ãÉí~ä

i~êÖÉI=Åçäçê=
çÑ=ãÉí~ä

mä~ëíáÅ ãÉÇáìã
jÉÇáìãI=
Åçäçê=çÑ=
éä~ëíáÅ

jÉÇáìãI=
ïÜáíÉ

mä~åÉí M î~êóáåÖ M

42

BRDF
For more physical correctness, we would also weight
the specular part by N • L:

The function fr maps incoming (light) directions win to
outgoing (viewing) directions wout:

This function is called the Bi-directional Reflectance
Distribution Function (BRDF).

Here’s a plot with win held constant:

BRDF’s can be quite sophisticated…

fr (ωin ,ωout) or fr (ωin→ωout)

fr (ωin ,ωout)
ωin

I = ILB kd (N ⋅L)+ ks(N ⋅L) N ⋅
L+V
L+V

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

n
s⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= ILB(N ⋅L) kd + ks N ⋅
L+V
L+V

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

n
s⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= ILB(N ⋅L) fr (L,V)

43

More sophisticated BRDF’s

Anisotropic BRDFs [Westin, Arvo, Torrance 1992]

[Cook and Torrance, 1982]

Artistics BRDFs [Gooch] 44

More sophisticated BRDF’s (cont’d)

tççä=ÅäçíÜ=~åÇ=ëáäâ=ÅäçíÜ=xfê~ï~å ~åÇ=j~êëÅÜåÉêI=OMNOz

e~áê=áääìãáå~íÉÇ=Ñêçã=ÇáÑÑÉêÉåí=~åÖäÉë=xj~êëÅÜåÉê Éí=~äKI==OMMPz

45

BSSRDFs for subsurface scattering

[Jensen et al., 2001]

46

Summary

You should understand the equation for the Blinn-
Phong lighting model described in the “Iteration Four”
slide:

w What is the physical meaning of each variable?
w How are the terms computed?
w What effect does each term contribute to the

image?
w What does varying the parameters do?

You should also understand the differences between
faceted, Gouraud, and Phong interpolated shading.

