

Images as functions

Image processing

An image processing operation typically defines a new image g in terms of an existing image f.

The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

$$
g(x, y)=t(f(x, y))
$$

Examples: threshold, RGB \rightarrow grayscale
Note: a typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y .

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{lll}
0.299 & 0.587 & 0.114 \\
0.596 & -0.275 & -0.321 \\
0.212 & -0.523 & 0.311
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] \quad \begin{aligned}
& \text { Use Y for } \\
& \text { compution } \\
& \text { gradicents } \\
& \text { in inpresisont }
\end{aligned}
$$

What is a digital image?

In computer graphics, we usually operate on digital (discrete) images:

- Sample the space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:
$f[i, j]=\operatorname{Quantize}\{f(i \Delta, j \Delta)\}$

Noise

Image processing is also useful for noise reduction and edge enhancement. We will focus on these applications for the remainder of the lecture.

Common types of noise:

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Ideal noise reduction

Ideal noise reduction

Practical noise reduction

How can we "smooth" away noise in a single image?

Is there a more abstract way to represent this sort of operation? Of course there is!

Discrete convolution

One of the most common methods for filtering an image is called discrete convolution. (We will just call this
"convolution" from here on.)

$$
f * h
$$

In 1D, convolution is defined as:
$g[i]=f[i] * h[i] \leftarrow$
$=\sum_{k} f[k] h[i-k] \leftarrow$
$=\sum_{k}^{k} \underbrace{\sim}_{\underbrace{f}_{\uparrow} \underbrace{[k]}_{\uparrow} \tilde{h}[k-i]} \leftarrow$
where $\tilde{h}[i] \equiv h[-i]$.

"Flipping" the kernel (i.e., working with $h[-i]$) is mathematically important. In practice, though, you can assume kernels are pre-flipped unless I say otherwise.

Convolution in 2D

In two dimensions, convolution becomes:

$$
\begin{aligned}
g[i, j] & =f[i, j] * h[i, j] \leftarrow \\
& =\sum_{0} \sum_{\overparen{\circ}} f[k, \ell] h[i-k, j-\ell] \leftarrow \\
& =\sum_{\ell} \sum_{k} f[k, \ell] \tilde{h}[k-i, \ell-j] \leftarrow
\end{aligned}
$$

where $\tilde{h}[i, j]=h[-i,-j]$.

Again, "flipping" the kernel (i.e., working with $h[-i,-j])$ is mathematically important. In practice, though, you can assume kernels are pre-flipped unless I say otherwise.

Convolving in 2D

Since f and h are defined over finite regions, we can write them out as two-dimensional arrays

	Image $f[i, j]$					
	128	54	9	78	100	
255	145.	98.	240	233	86	
128	89	177 ~	246	228	127	
97	67.	90 -	255	148 .		-
	106	111	128	$84 \cdot$	172	-
	221	154	97	69.	94	

Filter $h[i, j]$		
X 0.1	X 0.1	X 0.1
X 0.1	X 0.2	X 0.1
X 0.1	X 0.1	X 0.1

- This is not matrix multiplication.
- For color images, filter each color channel separately
- The filter is assumed to be zero outside its boundary.

Q: What happens at the boundary of the image ?

Convolving in 2D

Since f and h are defined over finite regions, we can write them out as two-dimensional arrays:

Image $f[i, j]$

128	54	9	78	100
145	98	240	233	86
89	177	246	228	127
67	90	255	148	95
106	111	128	84	172
221	154	97	69	94

| Filter $h[i, j]$ | | |
| :--- | :---: | :---: |\quad| filter kernel |
| :--- |
| 0.1 |
| 0.1 |
| 0.1 |

- This is not matrix multiplication.
- For color images, filter each color channel separately.
- The filter is assumed to be zero outside its boundary.

Q: What happens at the boundary of the image?

Normalization

Suppose f is a flat / constant image, with all pixel
values equal to some value C.

C	C	C	C	C
C	$C \times h_{13}$	$C \times h_{23}$	$C \times \neq 3$	C
C	$C \times h_{12}$	$C \times h_{22}$	$C \times h_{32}$	C
C	$C \times h_{11}$	$C \times h_{21}$	$C \times h_{31}$	C
C	C	C	C	C
C	C	C	C	C

$$
g[i, j]=C \cdot h_{3} 3+C \cdot h_{23}+C \cdot h_{33}+
$$

Q: How do we avoid getting a value brighter or darkerk than the original image.

Mean bilateral filtering

Bilateral filtering is a method to average together
nearby samples only if they are similar in value.

This is a "mean bilateral filter" where you take the average of everything that is both within the domain footprint ($w \times w$ in 2D) and range height (h). You must sum up all pixels you find in that "box" and then divide by the number of pixels.

Q: What happens as the range size becomes large?
mean filler

Q: Will bilateral filtering take care of impulse noise? X_{0}.

2D Mean bilateral filtering

Now consider filtering an image with a bilateral filter with a 3×3 domain and a total range height of 40 (i.e., range of $[-20,20]$ from center pixel)

205	198	190	203	210	192
191	203	191	194	206	98
210	197	204	101	98	103
205	199	104	97	94	107
190	92	106	106	100	108
110	91	101	100	96	99

$203+210+192$
$+194+206$
\qquad
5

Color bilateral filtering

Finally, for color, we simply compute range distance in R, G, B space as the length of the vector between the two color vectors. Consider colors at different pixels:

$$
C_{1}=\left[\begin{array}{c}
R_{1} \\
G_{1} \\
B_{1}
\end{array}\right] \quad C_{2}=\left[\begin{array}{c}
R_{2} \\
G_{2} \\
B_{2}
\end{array}\right]
$$

The range distance between them is then:

$$
\left\|C_{1}-C_{2}\right\|_{2}=\sqrt{\left(R_{1}-R_{2}\right)^{2}+\left(G_{1}-G_{2}\right)^{2}+\left(B_{1}-B_{2}\right)^{2}}
$$

After selecting pixels that are within the color distance range, you then separately average each color channel of those pixels to compute the final color.

Gaussian bilateral filtering

We can also change the filter to something "nicer" like Gaussians. Let's go back to 1D.

Where σ_{d} is the width of the domain Gaussian and σ_{r} is the width of the range Gaussian.

Note that we can write a 2D Gaussian as a product of two Gaussians (i.e., it is a separable function):

$$
h[i, r] \sim e^{-\left(i^{2}+r^{2}\right) /\left(2 \sigma^{2}\right)}=e^{-i^{2} /\left(2 \sigma^{2}\right)} e^{-r^{2} /\left(2 \sigma^{2}\right)}
$$

where i indexes the spatial domain and r is the range difference. This would make a round Gaussian. We can make it elliptical by having different σ^{\prime} s for domain and range:

$$
\begin{aligned}
h[i, r] & \sim e^{-i^{2} /\left(2 \sigma_{d}^{2}\right)} e^{-r^{2} /\left(2 \sigma_{r}^{2}\right)} \\
& \sim h_{d}(i) h_{r}(r)
\end{aligned}
$$

The math: 1D bilateral filtering

Recall that convolution looked like this:

$$
g[i]=\frac{1}{C} \sum_{k} f[k] h_{d}[i-k]
$$

with normalization (sum of filter values):

$$
C=\sum_{k} h_{d}[i-k]
$$

This was just domain filtering.
The bilateral filter is similar, but includes both domain and range filtering:

$$
g[i]=\frac{1}{C} \sum_{k} f[k] h_{d}[i-k] h_{r}(f[i]-f[k])
$$

with normalization (sum of filter values):

$$
C=\sum_{k} h_{d}[i-k] h_{r}(f[i]-f[k])
$$

Note that with regular convolution, we pre-compute C once, but for bilateral filtering, we must compute it at each pixel location where it's applied.

The math: 2D bilateral filtering

In 2D, bilateral filtering generalizes to having a 2D domain, but still a 1D range:
$g[i, j]=\frac{1}{C} \sum_{k, \ell} f[k, \ell]_{d}[i-k, j-\ell] h_{r}(f[i, j]-f[k, \ell])$
And the normalization becomes (sum of filter values):

$$
C=\sum_{k, \ell} h_{d}[i-k, j-\ell] h_{r}(f[i, j]-f[k, \ell])
$$

For Gaussian filtering, the new form looks like this:

$$
\begin{aligned}
h[i, j, r] & \sim e^{-\left(i^{2}+j^{2}\right) /\left(2 \sigma_{d}^{2}\right)} e^{-r^{2} /\left(2 \sigma_{r}^{2}\right)} \\
& \sim h_{d}(i, j) h_{r}(r)
\end{aligned}
$$

Note that Gaussian bilateral filtering is slow without some optimization, and some optimizations can be fairly complicated (if worthwhile). Fortunately, simple mean bilateral filtering is fairly fast and works well in practice.

Edge detection

One of the most important uses of image processing is edge detection:

- Really easy for humans
- Really difficult for computers
- Fundamental in computer vision
- Important in many graphics applications

What is an edge?

Q: How might you detect an edge in 1D?

$$
\left|\frac{d f}{d x}\right|>\text { thresh }
$$

Q: How might you approximate this edge measure with
central dittence
 discrete samples? finite differed

$$
\begin{aligned}
& \frac{d f}{d x}[i] \approx f[i+1]-f[i] \quad \frac{d f}{d x}[i]
\end{aligned} \frac{f[i+1]-f[i-1]}{2}
$$

Q: How could you do it with discrete convolution?

$$
\begin{aligned}
& \frac{d f}{d x}[i) \approx(-1) \cdot f[i]+(1)+[i+1] \\
& {\left[\begin{array}{ll}
-1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & -1 & 1
\end{array}\right]=\tilde{h}[i] } \\
& \uparrow \uparrow
\end{aligned} \uparrow \quad h[i]=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right] .
$$

Less than ideal edges

Gradients

The gradient is the 2D equivalent of the derivative:

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

Properties of the gradient

- It's a vector

$$
\left.\begin{array}{rl}
\theta & =\tan ^{-1}\left(\frac{\partial f(\partial y}{\partial f(\partial x}\right) \\
& \|f\|_{2}
\end{array}=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}\right)
$$

- Points in the direction of maximum increase of f
- Magnitude is rate of increase

Steps in edge detection

Edge detection algorithms typically proceed in three or four steps:

- Filtering: cut down on noise
- Enhancement: amplify the difference between edges and non-edges
- Detection: use a threshold operation
- Localization (optional): estimate geometry of edges as 1D contours that can pass between pixels

Edge enhancement

A popular gradient filter is the Sobel operator: app, in Impressisu,st) \quad in

We can then compute the magnitude of the vecto $\left(\tilde{s}_{x}, \tilde{s}_{y}\right)$.

Note that these operators are conveniently "pre flipped" for convolution, so you can directly slide these across an image without flipping first.

Second derivative operators

The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

Q: A peak in the first derivative corresponds to what in the second derivative?
zero

Constructing a second derivative filter

We can construct a second derivative filter from the first derivative.
First, one can show that convolution has some convenient properties. Given functions a, b, c :
Commutative: $a * b=b * a$
Associative: $(a * b) * c=a *(b * c)$
Distributive: $a *(b+c)=a * b+a * c$

The "flipping" of the kernel is needed for associativity. Now let's use associativity to construct our second derivative filter.

$$
\frac{d^{2} f}{d x^{2}}=\frac{d}{d x} \cdot \frac{d f}{d x} \approx \frac{d g}{d x} \quad g=\frac{d f}{d x} \approx \cdot k_{x} * t
$$

Constructing a second derivative filter

The second derivative filter is then: $h_{x}{ }^{*} h_{x}$

h_{x}		
1	-1	0

0	-1	1

$$
\begin{aligned}
& h_{x x}= \\
& {\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]}
\end{aligned}
$$

Localization with the Laplacian

An equivalent measure of the second derivative in 2D is the Laplacian

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \approx h_{x x}^{*} f+h_{y y^{*}} f
$$

Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

(The symbol Δ is often used to refer to the discrete Laplacian filter.)

Zero crossings in a Laplacian filtered image can be used to localize edges.

Summary

What you should take away from this lecture:

- The meanings of all the boldfaced terms.
- How noise reduction is done
- How discrete convolution filtering works
- The effect of mean, Gaussian, and median filters
- What an image gradient is and how it can be computed
- How edge detection is done
- What the Laplacian image is and how it is used in either edge detection or image sharpening

