Hierarchical Modeling

Brian Curless
CSEP 557
Spring 2019

Reading

Optional:

+ Angel, sections 8.1 - 8.6, 8.8

Further reading:
¢ OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.

QAQ/B\&/L&

Q: What is the matrix for the instance transformation
above?

M=TRG

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids,
with the following 3 degrees of freedom:

+ Base rotates about its vertical axis by &
¢ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy-plane by

wer arm
Upper ar Y ~
¢, n|
Base — X he
, . ,
[Angel, 2011] X
(o O\ R N\
(Note that the angles are set to zero in the figures on the) t
right; i.e., the parts are shown in their “default” positions.)
i . .’RZ.’T.’.’..
Suppose we have transformations R.(-), R, (), R.("), T(-, -,) - k \’L (q&\-((o)lnl D\,R%(\A
Q: What matrix do we use to transform the base? { _(6)"! (0, 0I5y '
NS B!
Q: What matrix product for the upper arm? M
UA
Q: What matrix product for the lower arm? L

3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...

From parts to model to viewer

y

M model
Y
World space
Z
w
Myiew
Y
Ye JAW Eye or camera space
T
o Le

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute view transform();

robot arm() ;

robot arm()

{
M model = R y(theta);
M =M view*M model;
base () ;
M model = R y(theta)*T(0,hl,0)*R z(phi);
M =M view*M model;
upper arm() ;
M model = R y(theta)*T(0,hl,0)*R z(phi)*T(0,h2,0)*R _z(psi);
M =M view*M model;

lower arm();

Do the matrix computations seem wasteful?

Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M modelview;

main ()

{

M modelview = compute view_ transform() ;

robot arm() ;

robot arm()
{
M modelview *= R y(theta);
base () ;
M modelview *= T(0,hl,0)*R z(phi);
upper _arm() ;
M modelview *= T(0,h2,0)*R z(psi);

lower arm();

Hierarchical modeling

Hierarchical models can be composed of instances

using trees or DAGs: /

Chassis \Chassi}/
M RE U [R§ L-F
R-F\ / LR
/;
Right-front | | Right-rear | Lefi-front Left-rear Whee}\ |
wheel wheel wheel wheel \ Whore d
Mo
+ edges contain geometric transformations

+ nodes contain geometry (and possibly drawing
attributes) Base
We will use trees for hierarchical models.
Pok
Uk
M
(v |

How might we
draw the tree for

the robot arm?

A complex example: human figure

Left-upper || |Right-upper
leg

leg
Right-lower|| | Left-lower || |Right-lower
arm leg leg

Q: What's the most sensible way to traverse this tree?

N

Left-lower
arm

i

10

Using canonical primitives T Base
Consider building the robot arm again, but this time the m
building blocks are canonical primitives like a unit cylinder /\ﬂ/cyr
and a unit cube. We can use transformations like 7(z,.t,,z,), M
S(5,,5.,5.) , R(0), etc. uA

xy2z) o B\ q“
What additional transformations are needed? T 7
What does the hierarchy look like now? ,

y y Moot |

. 1 |
Ca.no'n.|cal : I @ y | 1 Lk
primitives U 1 m
z Meobd

cnbotl - C
M Unit cube 1‘/\‘0"\'Q

M C\{\ - Unit cylinder
70\ S(d,)h ‘)0W T(>/ s WLLL)Q\/ ;9_1%5(\/4 \n?,,%) m

Lower arm

Upper arm / \’ y
.

11

Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

12

Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

¢ A good interactive system

+ A lot of skill on the part of the animator

6 1+ 6()

13

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many different objects

L 4

lights

¢ camera position

This is called a scene tree or scene graph.

Scene
Camera
Light1
Light2
Xform
Object2

Xform
Object1
\;(form
qurm Materials1 \Geor:]etry1
Ob}ect3

14

Summary

Here’s what you should take home from this lecture:

*

*

All the boldfaced terms.

How primitives can be instanced and composed

to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.

15

