
1

Hierarchical Modeling

Brian Curless
CSEP 557

Spring 2019

2

Reading

Optional:

w Angel, sections 8.1 – 8.6, 8.8

Further reading:
w OpenGL Programming Guide, chapter 3

3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

w spheres
w cubes
w cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation
above?

4

3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids,
with the following 3 degrees of freedom:

w Base rotates about its vertical axis by q
w Upper arm rotates in its xy-plane by f
w Lower arm rotates in its xy-plane by y

(Note that the angles are set to zero in the figures on the
right; i.e., the parts are shown in their “default” positions.)

Suppose we have transformations Rx(·), Ry(·), Rz(·), T(· , ·, ·).

Q: What matrix do we use to transform the base?

Q: What matrix product for the upper arm?

Q: What matrix product for the lower arm?

[Angel, 2011]

Base

Upper arm

Lower arm

5

An alternative interpretation is that we are taking the
original coordinate frames…

…and translating and rotating them into place:

3D Example: A robot arm

yUA
xLAyLA

zLA

xUA

zUA

xB

yB

zB

Base

Upper arm

Lower arm

6

From parts to model to viewer

7

Robot arm implementation
The robot arm can be displayed by keeping a global
matrix and computing it at each step:
Matrix M, M_model, M_view;

main()
{

. . .
M_view = compute_view_transform();
robot_arm();
. . .

}

robot_arm()
{

M_model = R_y(theta);
M = M_view*M_model;
base();
M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
M = M_view*M_model;
upper_arm();
M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);
M = M_view*M_model;
lower_arm();

}

Do the matrix computations seem wasteful?

8

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M_modelview;

main()
{

. . .
M_modelview = compute_view_transform();
robot_arm();
. . .

}

robot_arm()
{

M_modelview *= R_y(theta);
base();
M_modelview *= T(0,h1,0)*R_z(phi);
upper_arm();
M_modelview *= T(0,h2,0)*R_z(psi);
lower_arm();

}

Robot arm implementation, better

9

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

w edges contain geometric transformations
w nodes contain geometry (and possibly drawing

attributes)
We will use trees for hierarchical models.

How might we
draw the tree for
the robot arm?

Base

Upper arm

Lower arm

10

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

11

Using canonical primitives

Consider building the robot arm again, but this time the
building blocks are canonical primitives like a unit cylinder
and a unit cube. We can use transformations like T(tx,ty,tz),
S(sx,sy,sz) , Ry(q), etc.

What additional transformations are needed?
What does the hierarchy look like now?

Base

Lower arm

Upper arm

Canonical
primitives

Unit cylinder Unit cube

12

Animation

The above examples are called articulated models:

w rigid parts
w connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.

13

Key-frame animation

The most common method for character animation in
production is key-frame animation.

w Each joint specified at various key frames (not
necessarily the same as other joints)

w System does interpolation or in-betweening

Doing this well requires:

w A way of smoothly interpolating key frames:
splines

w A good interactive system
w A lot of skill on the part of the animator

14

Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

w many different objects
w lights
w camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2 Object1

Object2
Object3

Xform

Geometry1Materials1Xform
Xform

.

.

.

.

.

.

Xform

15

Summary

Here’s what you should take home from this lecture:

w All the boldfaced terms.
w How primitives can be instanced and composed

to create hierarchical models using geometric
transforms.

w How the notion of a model tree or DAG can be
extended to entire scenes.

w How OpenGL transformations can be used in
hierarchical modeling.

w How keyframe animation works.

