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Reading

Optional:

+ Angel, sections 8.1 - 8.6, 8.8

Further reading:
¢ OpenGL Programming Guide, chapter 3



Symbols and instances

Most graphics APIs support a few geometric
primitives:

¢ spheres
¢ cubes
¢ cylinders

These symbols are instanced using an instance
transformation.
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Q: What is the matrix for the instance transformation
above?
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3D Example: A robot arm

Let’s build a robot arm out of a cylinder and two cuboids,
with the following 3 degrees of freedom:

+ Base rotates about its vertical axis by &
¢ Upper arm rotates in its xy-plane by ¢
¢ Lower arm rotates in its xy-plane by
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(Note that the angles are set to zero in the figures on the ) t
right; i.e., the parts are shown in their “default” positions.)
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3D Example: A robot arm

An alternative interpretation is that we are taking the
original coordinate frames...
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Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M, M model, M view;

main ()

{

M view = compute view transform();

robot arm() ;

robot arm()

{
M model = R y(theta);
M =M view*M model;
base () ;
M model = R y(theta)*T(0,hl,0)*R z(phi);
M =M view*M model;
upper arm() ;
M model = R y(theta)*T(0,hl,0)*R z(phi)*T(0,h2,0)*R _z(psi);
M =M view*M model;

lower arm();

Do the matrix computations seem wasteful?



Robot arm implementation, better

Instead of recalculating the global matrix each time,
we can just update it in place by concatenating
matrices on the right:

Matrix M modelview;

main ()

{

M modelview = compute view_ transform() ;

robot arm() ;

robot arm()
{
M modelview *= R y(theta);
base () ;
M modelview *= T(0,hl,0)*R z(phi);
upper _arm() ;
M modelview *= T(0,h2,0)*R z(psi);

lower arm();



Hierarchical modeling

Hierarchical models can be composed of instances

using trees or DAGs: /
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+ edges contain geometric transformations

+ nodes contain geometry (and possibly drawing
attributes) Base
We will use trees for hierarchical models.
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How might we
draw the tree for

the robot arm?




A complex example: human figure

Left-upper || |Right-upper
leg

leg
Right-lower|| | Left-lower || |Right-lower
arm leg leg

Q: What's the most sensible way to traverse this tree?

N

Left-lower
arm

i

10



Using canonical primitives T Base
Consider building the robot arm again, but this time the m
building blocks are canonical primitives like a unit cylinder /\ﬂ/cyr
and a unit cube. We can use transformations like 7(z,.t,,z,), M
S(5,,5.,5.) , R(0), etc. uA
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What additional transformations are needed? T 7
What does the hierarchy look like now? ,
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Animation

The above examples are called articulated models:
* rigid parts
¢ connected by joints

They can be animated by specifying the joint angles
(or other display parameters) as functions of time.
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Key-frame animation

The most common method for character animation in
production is key-frame animation.

¢ Each joint specified at various key frames (not
necessarily the same as other joints)

¢ System does interpolation or in-betweening

Doing this well requires:

+ A way of smoothly interpolating key frames:
splines

¢ A good interactive system

+ A lot of skill on the part of the animator

6 1+ 6()
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Scene graphs

The idea of hierarchical modeling can be extended to
an entire scene, encompassing:

+ many different objects

L 4

lights

¢ camera position

This is called a scene tree or scene graph.
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Summary

Here’s what you should take home from this lecture:

*

*

All the boldfaced terms.

How primitives can be instanced and composed

to create hierarchical models using geometric
transforms.

How the notion of a model tree or DAG can be
extended to entire scenes.

How OpenGL transformations can be used in
hierarchical modeling.

How keyframe animation works.
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