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Reading

Optional:

w Angel, sections 8.1 – 8.6, 8.8 

Further reading:
w OpenGL Programming Guide, chapter 3
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Symbols and instances

Most graphics APIs support a few geometric 
primitives:

w spheres
w cubes
w cylinders

These symbols are instanced using an instance 
transformation.

Q: What is the matrix for the instance transformation 
above?
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3D Example:  A robot arm

Let’s build a robot arm out of a cylinder and two cuboids, 
with the following 3 degrees of freedom:

w Base rotates about its vertical axis by q
w Upper arm rotates in its xy-plane by f
w Lower arm rotates in its xy-plane by y

(Note that the angles are set to zero in the figures on the 
right; i.e., the parts are shown in their “default” positions.)

Suppose we have transformations Rx(·), Ry(·), Rz(·), T(· , ·, ·).

Q:  What matrix do we use to transform the base?

Q:  What matrix product for the upper arm?

Q:  What matrix product for the lower arm?

[Angel, 2011]
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An alternative interpretation is that we are taking the 
original coordinate frames…

…and translating and rotating them into place:

3D Example:  A robot arm
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From parts to model to viewer



7

Robot arm implementation
The robot arm can be displayed by keeping a global 
matrix and computing it at each step:
Matrix M, M_model, M_view;

main()
{

. . .
M_view = compute_view_transform();
robot_arm();
. . .

}

robot_arm()
{

M_model = R_y(theta);
M = M_view*M_model;
base();
M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
M = M_view*M_model;
upper_arm();
M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);
M = M_view*M_model;
lower_arm();

}

Do the matrix computations seem wasteful?
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Instead of recalculating the global matrix each time, 
we can just update it in place by concatenating 
matrices on the right:

Matrix M_modelview;

main()
{

. . .
M_modelview = compute_view_transform();
robot_arm();
. . .

}

robot_arm()
{

M_modelview *= R_y(theta);
base();
M_modelview *= T(0,h1,0)*R_z(phi);
upper_arm();
M_modelview *= T(0,h2,0)*R_z(psi);
lower_arm();

}

Robot arm implementation, better



9

Hierarchical modeling

Hierarchical models can be composed of instances 
using trees or DAGs:

w edges contain geometric transformations
w nodes contain geometry (and possibly drawing 

attributes)
We will use trees for hierarchical models.

How might we 
draw the tree for 
the robot arm?
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A complex example: human figure

Q:  What’s the most sensible way to traverse this tree?
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Using canonical primitives

Consider building the robot arm again, but this time the 
building blocks are canonical primitives like a unit cylinder 
and a unit cube.  We can use transformations like T(tx,ty,tz), 
S(sx,sy,sz) , Ry(q ), etc.

What additional transformations are needed?
What does the hierarchy look like now? 
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Animation

The above examples are called articulated models:

w rigid parts
w connected by joints

They can be animated by specifying the joint angles 
(or other display parameters) as functions of time.
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Key-frame animation

The most common method for character animation in 
production is key-frame animation.

w Each joint specified at various key frames (not 
necessarily the same as other joints)

w System does interpolation or in-betweening

Doing this well requires:

w A way of smoothly interpolating key frames:  
splines

w A good interactive system
w A lot of skill on the part of the animator
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Scene graphs

The idea of hierarchical modeling can be extended to 
an entire scene, encompassing:

w many different objects
w lights
w camera position

This is called a scene tree or scene graph.
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Summary

Here’s what you should take home from this lecture:

w All the boldfaced terms.
w How primitives can be instanced and composed 

to create hierarchical models using geometric 
transforms.

w How the notion of a model tree or DAG can be 
extended to entire scenes.

w How OpenGL transformations can be used in 
hierarchical modeling.

w How keyframe animation works.


