# Accelerated ray tracing 

Brian Curless<br>CSEP 557<br>Spring 2019

## Reading

Required:

- Marschner and Shirley, Sections 12.3 (online handout)

Further reading:

- A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989.


## Faster ray-polyhedron intersection

Let's say you were intersecting a ray with a triangle mesh:


Straightforward method

- intersect the ray with each triangle
- return the intersection with the smallest $t$-value.

Q: How might you speed this up?

## Bounding Volume Hierarchies (BVHs)

We can generalize the idea of bounding volume acceleration with bounding volume hierarchies (BVHs).


Intersect with largest B.V...

...then intersect with children...

...until you reach the leaf nodes - the primitives.

Key: build balanced trees with tight bounding volumes.

## Uniform spatial subdivision

Another approach is uniform spatial subdivision.


Uniform subdivion in 3D

Idea:

- Partition space into cells (voxels)
- Associate each primitive with the cells it overlaps
- Trace ray through voxel array using fast incremental arithmetic to step from cell to cell

Q: Given $10^{6}$ triangle football stadium with a $10^{6}$ triangle teapot on one of the seats, would a single uniform spatial subdivision be a good idea?

## Non-uniform spatial subdivision: octrees

Another approach is non-uniform spatial subdivision. One version of this is octrees:



Octree in 3D

## Non-uniform spatial subdivision: $\boldsymbol{k}$-d trees

Another non-uniform subdivision is $k$ - $d$ ( $k$-dimensional) trees:


If the planes can be non-axis aligned, then you get BSP (binary space partitioning) trees.

Various combinations of these ray intersections techniques are also possible.

## Summary

What to take home from this lecture:

- An intuition for how ray tracers can be accelerated.

