Accelerated ray tracing

Brian Curless CSEP 557 Spring 2019

1

Reading

Required:

Marschner and Shirley, Sections 12.3 (online handout)

Further reading:

 A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989.

Faster ray-polyhedron intersection

Straightforward method

- intersect the ray with each triangle
- return the intersection with the smallest *t*-value.

Q: How might you speed this up?

Bounding Volume Hierarchies (BVHs)

We can generalize the idea of bounding volume acceleration with **bounding volume hierarchies (BVHs)**.

Key: build balanced trees with *tight bounding volumes*.

Uniform spatial subdivision

Another approach is **uniform spatial subdivision**.

Uniform subdivion in 3D

<u>Idea</u>:

- Partition space into cells (voxels)
- Associate each primitive with the cells it overlaps
- Trace ray through voxel array using fast incremental arithmetic to step from cell to cell
- **Q**: Given a10⁶ triangle football stadium with a 10⁶ triangle teapot on one of the seats, would a single uniform spatial subdivision be a good idea?

Non-uniform spatial subdivision: octrees

Another approach is **non-uniform spatial subdivision**. One version of this is octrees:

Octree in 3D

Non-uniform spatial subdivision: k-d trees

Another non-uniform subdivision is *k*-d (*k*-dimensional) trees:

If the planes can be non-axis aligned, then you get BSP (binary space partitioning) trees.

Various combinations of these ray intersections techniques are also possible.

[Image credits: Wikipedia.]

Summary

What to take home from this lecture:

• An intuition for how ray tracers can be accelerated.