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Reading

Required:

w Marschner and Shirley, Section 13.4 (online 
handout)

Further reading:

w Pharr, Jakob, and Humphreys, Physically Based 
Ray Tracing: From Theory to Implementation, 
Chapter 13 

w A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. 

w Robert L. Cook, Thomas Porter, Loren 
Carpenter. “Distributed Ray Tracing.”  
Computer Graphics (Proceedings of SIGGRAPH 
84). 18 (3). pp. 137-145. 1984.

w James T. Kajiya. “The Rendering Equation.”  
Computer Graphics (Proceedings of SIGGRAPH 
86). 20 (4). pp. 143-150. 1986.
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Aliasing

Ray tracing is a form of sampling and can suffer from 
annoying visual artifacts... 

Consider a continuous function ƒ(x).  Now sample it at 
intervals D to give ƒ[i] = quantize[ƒ(i D)].

Q: How well does ƒ[i] approximate ƒ(x)?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well 
approximated by the samples.
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Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be 
approximating the first lower frequency sinusoid 
again.

We say that, after sampling, the higher frequency 
sinusoid has taken on a new “alias”, i.e., changed its 
identity to be a lower frequency sinusoid.
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Aliasing and anti-aliasing in rendering

One of the most common rendering artifacts is the 
“jaggies”.  Consider rendering a white polygon against 
a black background:

We would instead like to get a smoother transition:

Anti-aliasing is the process of removing high 
frequencies before they cause aliasing.

In a renderer, computing the average color within a 
pixel is a good way to anti-alias.  How exactly do we 
compute the average color?
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Antialiasing in a ray tracer

We would like to compute the average intensity in the 
neighborhood of each pixel. 

When casting one ray per pixel, we are likely to have 
aliasing artifacts.

To improve matters, we can cast more than one ray 
per pixel and average the result.

A.k.a., super-sampling and averaging down.
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Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily 
costly.  If there are no rapid changes in intensity at the 
pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular 
area?
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Gloss and translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:
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Distributing rays over light source area gives:

Soft shadows
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A real pinhole camera

The first camera - “camera obscura” - known to 
Aristotle.

In 3D, we can visualize the blur induced by the pinhole 
(a.k.a., aperture):

Q: How would we reduce blur?
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Shrinking the pinhole

Q: What happens as we continue to shrink the 
aperture?
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Shrinking the pinhole, cont’d
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Lenses to focus light

A lens can capture a sharp image of an object 
without using a tiny aperture, allowing for shorter 
exposure times.

It does this by refracting (focusing) a cone of rays 
emanating from a scene point down to a single 
image point:

For a given image plane, there is a parallel object 
plane that is kept in focus.

The wider the aperture, the more light collected, 
allowing for shorter exposure times, but there is a 
trade-off…
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Depth of field

A significant limitation (or perhaps desirable artistic 
effect J) of lenses is the fact that points that are not 
in the object plane appear out of focus.  

The depth of field of a camera is a measure of how 
far from the object plane points can be before 
appearing “too blurry.”

Image credit: http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
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Depth of field (cont’d)

To simulate depth of field, we can model the refraction of 
light through a lens.  Objects close to the in-focus plane 
are sharp, and the rest is blurry.



16

Depth of field (cont’d)

Neat idea: we can think of this as a generalization of the 
graphics pinhole model:

But now:

w Put the image plane at the depth you want to be in focus.
w Treat the aperture as multiple COPs (samples across the 

aperture).
w For each pixel, trace multiple viewing/primary rays for 

each COP and average the results.
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Motion blur

Distributing rays over time gives:

How can we use super-sampling and averaging down 
to get motion blur?
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Consider Whitted vs. a brute force approach with anti-aliasing, depth of field, area lights, gloss…

Asymptotic # of intersection tests ≈

For m =1,000, k = a = s = r = 8, n = 1,000,000,            , d = 8 … very expensive!!

Whitted
ray tracing

Brute force,
advanced 

ray tracing

Naively improving Whitted ray tracing

ℓ = 4

Advanced ray tracing has:

w m x m pixels
w k x k supersampling
w a x a sampling of 

camera aperture
w n primitives
w area light sources
w s x s sampling of each 

area light source
w r x r rays cast recursively 

per intersection 
(gloss/translucency)

w d is average ray path 
length 

ℓ
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Penumbra revisited
Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel, 
but now when we hit a surface, we cast rays to 
samples on the area light source.
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Penumbra revisited

We should anti-alias to get best looking results.  

Whoa, this is a lot of rays…just for one pixel!!
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Penumbra revisited

We can get a similar result with much less computation:
w Choose random location within a pixel, trace ray.
w At first intersection, choose random location on area 

light source and trace shadow ray.
w Continue recursion as with Whitted, but always choose 

random location on area light for shadow ray.
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Orientation of an area light

One important detail for area lights…

As an area light tilts away away from a scene point, less of the 
light is “visible” to that scene point, which means that less 
light reaches the point.

Thus, we attenuate the contribution of the light by the cosine 
of the angle of the light and the direction to a point on the 
surface.
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Monte Carlo Path Tracing vs. Brute Force
We can generalize this idea to do random sampling for 
each viewing ray, shadow ray, reflected ray, etc.  This 
approach is called Monte Carlo Path Tracing (MCPT).

Monte Carlo
path tracing

Brute force,
advanced 

ray tracing
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MCPT vs. Whitted
Q: For a fixed number of rays per pixel, does MCPT 

trace more total rays than Whitted?

Q: Does MCPT give the same answer every time?

Whitted
ray tracing

Monte Carlo
path tracing
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Ray tracing as integration

Ray tracing amounts to estimating a multi-
dimensional integral at each pixel.  The integration is 
over:

w the pixel area
w the aperture
w each light source
w all diffuse/glossy reflections (recursively)

MCPT images are often noisy.  We can reduce noise by 
being smarter about which rays we cast…
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Penumbra revisited: clumped samples
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Penumbra: stratified sampling

Stratified sampling gives a better distribution of samples:

w Break pixel and light source into regions.  
w Choose random locations within each region.
w Trace rays through/to those jittered locations.
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Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a 
2D pixel  (here 16 rays/pixel):

The stratified pattern on the right is also sometimes 
called a jittered sampling pattern.

Similar grids can be constructed over the camera 
aperture, light sources, and diffuse/glossy reflection 
directions.

Random Stratified
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16 rays/pixel
uniform sampling

16 rays/pixel
stratified sampling

64 rays/pixel
uniform sampling

Stratified sampling of an area light
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16 rays/pixel uniform sampling
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16 rays/pixel stratified sampling
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64 rays/pixel uniform sampling
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Integration over reflection

As described earlier, we can also reflect rays in 
directions away from ideal reflection.

An extreme case is diffuse reflection.  The idea is that 
we:

1. Hit a surface.

2. Choose a random direction for reflection.

3. Treat the returning ray value as a directional light.

4. Shade with that returned indirect light, as well as 
with direct lighting.

5. Return the result.
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Diffuse interreflection

Depth 0 Depth 1 Depth 5
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Importance sampling

Originally, we said we would choose a random direction for diffuse 
reflection.  Whatever comes back, we will weight it by cosq, where q
is the angle between the normal and the reflection direction.

Let’s look at a bunch of uniformly random directions.  Are they 
equally important?

Instead, we could choose to reflect more rays in directions where 
cosq is greater, and fewer where it is smaller:

This is called importance sampling.  In fact, if we choose the 
reflection direction q from a probability distribution function           
p(q ) ~ cos(q ) , then we don’t actually have to weight the rays at all!
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Importance sampling

100 rays/pixel
without
importance sampling

100 rays/pixel
with
importance sampling

200 rays/pixel
without
importance sampling



43100 rays/pixel without importance sampling



44100 rays/pixel with importance sampling



45200 rays/pixel without importance sampling



46900 rays/pixel with importance sampling
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Integration over reflection

Integration over diffuse/glossy reflections is at the 
heart of rendering.  Recall that the BRDF tells us how 
incoming light will scatter into outgoing directions:

By reciprocity, we can replace win on the left side 
above with wout, and treat the function fr(win, wout) as 
the “sensitivity” to different incoming directions.

To compute the total light for an outgoing direction, 
we integrate all incoming directions:

To integrate in with MCPT, when considering 
reflection recursion, we could just:

w Cast a ray in a (uniformly) random direction
w Weight the result by

fr (ωin,ωout )
wáå

I(ωout ) = I(ωin ) fr (ωin,ωout ) ωin ⋅N( )d
H
∫ ωin

fr (ωin,ωout ) ωin ⋅N( )
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Importance sampling of reflection
For a given BRDF:

again the surface reflection equation is:

With importance sampling:

w Cast a ray in a direction drawn from a distribution 
p(win) that is large where the BRDF is large.

w Weight the ray by:

Ideally, the distribution is proportional to the BRDF:

fr (ωin,ωout )ωout

I(ωout ) = I(ωin ) fr (ωin,ωout ) ωin ⋅N( )d
H
∫ ωin

p ωin( ) ~ fr (ωin,ωout ) ωin ⋅N( )

( ) ( )( , /)in out in inrf pw w w w×N



49
Area light, glossy and diffuse reflection, depth of field (1024 rays/pixel)

Another fancy render…
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MCPT for beginners

If you want to try out MCPT, it is not as hard as you might think.

Try it with simple sampling strategies:

• Choose one of the effects you really like, add more if you 
have time.

• Skip stratification.

• If you do diffuse, don’t do importance to begin with, just 
weight by the shading equation (normal dot with reflected 
ray direction).

• If you do glossy, you do need some kind of importance 
sampling.  

• Try simple perturbations around the reflection 
direction; the more random perturbation you allow, 
the blurrier the reflections.  

• The amount of perturbation is ideally determined by 
the specular exponent for Phong shading (bigger 
exponent means less perturbation).

• Throw a lot of rays per pixel!
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Summary

What to take home from this lecture:

w The meanings of all the boldfaced terms.
w An intuition for what aliasing is.
w How to reduce aliasing artifacts in a ray tracer
w The limitations of Whitted ray tracing (no glossy 

surfaces, etc.)
w The main idea behind Monte Carlo path tracing 

and what effects it can simulate (glossy surfaces, 
etc.)


