
1

Anti-aliasing and
Monte Carlo Path Tracing

Brian Curless
CSEP 557

Spring 2019

2

Reading

Required:

w Marschner and Shirley, Section 13.4 (online
handout)

Further reading:

w Pharr, Jakob, and Humphreys, Physically Based
Ray Tracing: From Theory to Implementation,
Chapter 13

w A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989.

w Robert L. Cook, Thomas Porter, Loren
Carpenter. “Distributed Ray Tracing.”
Computer Graphics (Proceedings of SIGGRAPH
84). 18 (3). pp. 137-145. 1984.

w James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH
86). 20 (4). pp. 143-150. 1986.

3

Aliasing

Ray tracing is a form of sampling and can suffer from
annoying visual artifacts...

Consider a continuous function ƒ(x). Now sample it at
intervals D to give ƒ[i] = quantize[ƒ(i D)].

Q: How well does ƒ[i] approximate ƒ(x)?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well
approximated by the samples.

4

Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be
approximating the first lower frequency sinusoid
again.

We say that, after sampling, the higher frequency
sinusoid has taken on a new “alias”, i.e., changed its
identity to be a lower frequency sinusoid.

5

Aliasing and anti-aliasing in rendering

One of the most common rendering artifacts is the
“jaggies”. Consider rendering a white polygon against
a black background:

We would instead like to get a smoother transition:

Anti-aliasing is the process of removing high
frequencies before they cause aliasing.

In a renderer, computing the average color within a
pixel is a good way to anti-alias. How exactly do we
compute the average color?

6

Antialiasing in a ray tracer

We would like to compute the average intensity in the
neighborhood of each pixel.

When casting one ray per pixel, we are likely to have
aliasing artifacts.

To improve matters, we can cast more than one ray
per pixel and average the result.

A.k.a., super-sampling and averaging down.

7

Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily
costly. If there are no rapid changes in intensity at the
pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular
area?

8

Gloss and translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are under-sampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

9

Distributing rays over light source area gives:

Soft shadows

10

A real pinhole camera

The first camera - “camera obscura” - known to
Aristotle.

In 3D, we can visualize the blur induced by the pinhole
(a.k.a., aperture):

Q: How would we reduce blur?

11

Shrinking the pinhole

Q: What happens as we continue to shrink the
aperture?

12

Shrinking the pinhole, cont’d

13

Lenses to focus light

A lens can capture a sharp image of an object
without using a tiny aperture, allowing for shorter
exposure times.

It does this by refracting (focusing) a cone of rays
emanating from a scene point down to a single
image point:

For a given image plane, there is a parallel object
plane that is kept in focus.

The wider the aperture, the more light collected,
allowing for shorter exposure times, but there is a
trade-off…

14

Depth of field

A significant limitation (or perhaps desirable artistic
effect J) of lenses is the fact that points that are not
in the object plane appear out of focus.

The depth of field of a camera is a measure of how
far from the object plane points can be before
appearing “too blurry.”

Image credit: http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

15

Depth of field (cont’d)

To simulate depth of field, we can model the refraction of
light through a lens. Objects close to the in-focus plane
are sharp, and the rest is blurry.

16

Depth of field (cont’d)

Neat idea: we can think of this as a generalization of the
graphics pinhole model:

But now:

w Put the image plane at the depth you want to be in focus.
w Treat the aperture as multiple COPs (samples across the

aperture).
w For each pixel, trace multiple viewing/primary rays for

each COP and average the results.

17

Motion blur

Distributing rays over time gives:

How can we use super-sampling and averaging down
to get motion blur?

18

Consider Whitted vs. a brute force approach with anti-aliasing, depth of field, area lights, gloss…

Asymptotic # of intersection tests ≈

For m =1,000, k = a = s = r = 8, n = 1,000,000, , d = 8 … very expensive!!

Whitted
ray tracing

Brute force,
advanced

ray tracing

Naively improving Whitted ray tracing

ℓ = 4

Advanced ray tracing has:

w m x m pixels
w k x k supersampling
w a x a sampling of

camera aperture
w n primitives
w area light sources
w s x s sampling of each

area light source
w r x r rays cast recursively

per intersection
(gloss/translucency)

w d is average ray path
length

ℓ

19

Penumbra revisited
Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel,
but now when we hit a surface, we cast rays to
samples on the area light source.

20

Penumbra revisited

We should anti-alias to get best looking results.

Whoa, this is a lot of rays…just for one pixel!!

21

Penumbra revisited

We can get a similar result with much less computation:
w Choose random location within a pixel, trace ray.
w At first intersection, choose random location on area

light source and trace shadow ray.
w Continue recursion as with Whitted, but always choose

random location on area light for shadow ray.

22

Orientation of an area light

One important detail for area lights…

As an area light tilts away away from a scene point, less of the
light is “visible” to that scene point, which means that less
light reaches the point.

Thus, we attenuate the contribution of the light by the cosine
of the angle of the light and the direction to a point on the
surface.

23

Monte Carlo Path Tracing vs. Brute Force
We can generalize this idea to do random sampling for
each viewing ray, shadow ray, reflected ray, etc. This
approach is called Monte Carlo Path Tracing (MCPT).

Monte Carlo
path tracing

Brute force,
advanced

ray tracing

24

MCPT vs. Whitted
Q: For a fixed number of rays per pixel, does MCPT

trace more total rays than Whitted?

Q: Does MCPT give the same answer every time?

Whitted
ray tracing

Monte Carlo
path tracing

25

Ray tracing as integration

Ray tracing amounts to estimating a multi-
dimensional integral at each pixel. The integration is
over:

w the pixel area
w the aperture
w each light source
w all diffuse/glossy reflections (recursively)

MCPT images are often noisy. We can reduce noise by
being smarter about which rays we cast…

26

Penumbra revisited: clumped samples

27

Penumbra: stratified sampling

Stratified sampling gives a better distribution of samples:

w Break pixel and light source into regions.
w Choose random locations within each region.
w Trace rays through/to those jittered locations.

28

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over a
2D pixel (here 16 rays/pixel):

The stratified pattern on the right is also sometimes
called a jittered sampling pattern.

Similar grids can be constructed over the camera
aperture, light sources, and diffuse/glossy reflection
directions.

Random Stratified

29

16 rays/pixel
uniform sampling

16 rays/pixel
stratified sampling

64 rays/pixel
uniform sampling

Stratified sampling of an area light

30
16 rays/pixel uniform sampling

31
16 rays/pixel stratified sampling

32
64 rays/pixel uniform sampling

33

Integration over reflection

As described earlier, we can also reflect rays in
directions away from ideal reflection.

An extreme case is diffuse reflection. The idea is that
we:

1. Hit a surface.

2. Choose a random direction for reflection.

3. Treat the returning ray value as a directional light.

4. Shade with that returned indirect light, as well as
with direct lighting.

5. Return the result.

34

Diffuse interreflection

Depth 0 Depth 1 Depth 5

35

36

37

38

39

40

41

Importance sampling

Originally, we said we would choose a random direction for diffuse
reflection. Whatever comes back, we will weight it by cosq, where q
is the angle between the normal and the reflection direction.

Let’s look at a bunch of uniformly random directions. Are they
equally important?

Instead, we could choose to reflect more rays in directions where
cosq is greater, and fewer where it is smaller:

This is called importance sampling. In fact, if we choose the
reflection direction q from a probability distribution function
p(q) ~ cos(q) , then we don’t actually have to weight the rays at all!

42

Importance sampling

100 rays/pixel
without
importance sampling

100 rays/pixel
with
importance sampling

200 rays/pixel
without
importance sampling

43100 rays/pixel without importance sampling

44100 rays/pixel with importance sampling

45200 rays/pixel without importance sampling

46900 rays/pixel with importance sampling

47

Integration over reflection

Integration over diffuse/glossy reflections is at the
heart of rendering. Recall that the BRDF tells us how
incoming light will scatter into outgoing directions:

By reciprocity, we can replace win on the left side
above with wout, and treat the function fr(win, wout) as
the “sensitivity” to different incoming directions.

To compute the total light for an outgoing direction,
we integrate all incoming directions:

To integrate in with MCPT, when considering
reflection recursion, we could just:

w Cast a ray in a (uniformly) random direction
w Weight the result by

fr (ωin,ωout)
wáå

I(ωout) = I(ωin) fr (ωin,ωout) ωin ⋅N()d
H
∫ ωin

fr (ωin,ωout) ωin ⋅N()

48

Importance sampling of reflection
For a given BRDF:

again the surface reflection equation is:

With importance sampling:

w Cast a ray in a direction drawn from a distribution
p(win) that is large where the BRDF is large.

w Weight the ray by:

Ideally, the distribution is proportional to the BRDF:

fr (ωin,ωout)ωout

I(ωout) = I(ωin) fr (ωin,ωout) ωin ⋅N()d
H
∫ ωin

p ωin() ~ fr (ωin,ωout) ωin ⋅N()

() ()(, /)in out in inrf pw w w w×N

49
Area light, glossy and diffuse reflection, depth of field (1024 rays/pixel)

Another fancy render…

50

MCPT for beginners

If you want to try out MCPT, it is not as hard as you might think.

Try it with simple sampling strategies:

• Choose one of the effects you really like, add more if you
have time.

• Skip stratification.

• If you do diffuse, don’t do importance to begin with, just
weight by the shading equation (normal dot with reflected
ray direction).

• If you do glossy, you do need some kind of importance
sampling.

• Try simple perturbations around the reflection
direction; the more random perturbation you allow,
the blurrier the reflections.

• The amount of perturbation is ideally determined by
the specular exponent for Phong shading (bigger
exponent means less perturbation).

• Throw a lot of rays per pixel!

51

Summary

What to take home from this lecture:

w The meanings of all the boldfaced terms.
w An intuition for what aliasing is.
w How to reduce aliasing artifacts in a ray tracer
w The limitations of Whitted ray tracing (no glossy

surfaces, etc.)
w The main idea behind Monte Carlo path tracing

and what effects it can simulate (glossy surfaces,
etc.)

