
Modeler Help



Outline

• Introduction

• Surface of Revolution

• Hierarchical Modeling

• Blinn-Phong Shader

• Custom Shader(s)



Scene View – contains your model and lights

Move the camera by dragging the mouse while 
holding down:

LMB – rotate the view
RMB or Ctrl+LMB – zoom 
Middle Button or Shift+LMB - pan

Objects in the Scene

Controls of the object 
selected in the Scene.

Currently the Scene itself 
is selected.



Menu Options

Shading Mode:
Try this out on the sphere, or the 
surface of revolution

Quality:
Determines the number of 
subdivisions and polygons to use

Show Light/Camera Markers:
Draws the XYZ Axes in the view 
and markers for the lights

Load Revolution Curve File:
Select a .apts file to use as a 
profile curve for Surface of 
Revolution

Load Texture File:
Loads another texture to use 
instead of checkers

Save Image:
Saves a snapshot of your 
scene view



Surface of Revolution

• Write OpenGL code to draw a surface by rotating a profile curve

• You need to calculate the following for each vertex:
• Texture Coordinates (UV)
• Normal
• Position

• Put your code in void drawRevolution(std::vector<Point2d> *pts, int divisions, double 

scale) in modelerdraw.cpp
• Divisions determines the number of slices
• The skeleton UI calls void drawRevolution(double scale). This implementation is a 

naïve and incorrect one, but illustrates how curve files can be changed into 
geometry.

• You should replace the code that draws the revolution incorrectly with a call to your 
method.



Curve Editor

• If it helps to have a simpler profile curve 
while testing, you can draw your own 
profile curve.

• The Curve Editor tool is linked on the 
project page.

• Ctrl+Left click to add points on one side

• Save the dense point samples into a 
.apts file.

• Load Revolution Curve File in Modeler



Slicing it into Triangle Bands

• Divide the surface into “bands”

• Compute vertex positions and 
normal
• Using sin(), cos(), in C++ code

• See the “Surfaces of Revolution” 
lecture slides for how

• Connect the dots with OpenGL 
triangles



Drawing the Triangles

• Build a triangle mesh and send it to OpenGL

• Construct an array for every piece of vertex 
information:
• Vertex position array

• Vertex normal array

• Vertex UV array

• Elements array (the faces of the triangles)

• Use ONE glDrawElements call with GL_TRIANGLES (required!)
• You may use glBegin/glEnd for testing shapes, but do not use them in the final 

submitted code!

• You may not use GL_QUAD_STRIP or GL_TRIANGLE_STRIP either.



Example (copy this code!)

Notice the data supplied into 
the arrays are always in the 
same order.
If the vertices positions are 
supplied as {V1, V2, V3, V4},
the normal must also be 
{N1, N2, N3, N4}, and the 
texture coordinates 
{T1, T2, T3, T4}

Triangle 1 is defined as V1,V0,V2. 
Triangle 2 is defined as V1,V2,V3.



Building the Faces

• Order Matters!!

• Depending on the order the faces 
are constructed, OpenGL will 
decide which face is the “front” 
and which is the “back”.

• Backfaces are not drawn by 
default (they are “culled”). 



Texture Mapping

• To compute the UV Texture Coordinates, the basic 
idea is to remap the arclength (curve distance) and 
longitude to the range 0-1.
• i.e. longitude for a vertex on the surface can be from 0-360 

degrees. The u coordinate can be from 0-1.
• See the lecture slides on “Texture Mapping” for a more 

detailed explanation

• Each vertex for your surface of revolution must have:
• Vertex Position
• Vertex Normal
• Texture Coordinate Pair

u

v

{1, 0}

{0, 1}

{0, 0}

{1, 1}



Hierarchical Modeling

• You must make a character with:
• 2 levels of branching (see project page)

• Something drawn at each level

• You will be using this model for your animator animation!

• Meaningful controls
• The more controls you add the better. It will make it easier to animate

• You will need to create your own model class



Creating your own model

• Create a new class that inherits 
from “Model”
• See sample.cpp and sample.h for an 

example of this.

• Override the draw method to draw 
your model
• You can use drawBox, drawCylinder in 

Modelerdraw.cpp as references

• You will need to add properties to 
control it



Creating your own model

• You will need to then add it as a member of scene.cpp
• Scene has a method draw() that draws the floor, and a 

shape depending on the “Model Shape:” property of 
the Scene.

• Add your own radio button to the end of the list and a 
case in this switch to call your model’s draw method

• Make sure to add your model’s properties to the scene’s 
properties by doing properties.add(mymodel.getProperties())

• Make sure to also add any textures and shaders to 
Scene::Load() to load them whenever the Load Textures 
and Shaders button is clicked
• If they are specific to your model, you can add shaders and 

textures as members of your model class, override the load 
method of your model, and have scene call your model’s load.



OpenGL is a state machine

• glEnable()/glDisable() changes state 

• Once you change something, it stays that way until you change it to 
something new 

• OpenGL’s state includes: 
• Current color 

• Transformation matrices

• Drawing modes

• Light sources



OpenGL’s transformation matrix

• Just two of them: projection and modelview. We’ll modify modelview. 

• Matrix applied to all vertices and normals

• These functions multiply transformations: glRotated(), glTranslated(), 
glScaled() Applies transformations in REVERSE order from the order in 
which they are called. 

• Transformations are cumulative. Since they’re all “squashed” into one 
matrix, you can’t “undo” a transformation.



Transformations: Going “back”

• How do we get back to an earlier transformation matrix? We can 
“remember” it

• OpenGL maintains a stack of matrices. 

• To store the current matrix, call glPushMatrix().

• To restore the last matrix you stored, call glPopMatrix().



Hierarchical Modeling in OpenGL



Hierarchical Modeling in OpenGL



Hierarchical Modeling in OpenGL



Hierarchical Modeling in OpenGL



Hierarchical Modeling in OpenGL



Hierarchical Modeling in OpenGL



A pop for every push

• Make sure there’s a glPopMatrix() for every 
glPushMatrix()!

• You can divide your draw() function into a series of 
nested methods, each with a push at the beginning 
and a pop at the end.

• Your model must have two levels of branching like 
in this diagram.
• Circles are objects
• Arrows are transformations

• Call glPushMatrix() after drawing green, so you can 
draw orange after drawing red
• Do the same for orange 

• You must draw something at each level.



Multiple-Joint Slider

• Needs to control multiple aspects of your model.
• Example: Rotate multiple joints at once 

• Don’t get too complicated!
• Wait for Animator in four weeks!



Blinn-Phong Shader

• We provide a directional light shader in OpenGL Shading Language 
(GLSL). You must extend it to support point lights.

• Files to Edit:
• shader.frag – your fragment shader

• shader.vert – your vertex shader



Compare with the Sample Solution

• Modeler_solution.exe loads shader.frag and 
shader.vert as the “student shader”

• In order to test your Blinn-Phong Point light 
shader, run the solution from the same folder as 
your shader.frag, and shader.vert
• Then under “Shader To Use:” you can switch between 

your student shader and the solution shader to check 
the differences.

• You can also use the “Shader Difference” shader, 
which highlights any differences between the two. 
You should end up seeing all black.
• (There may be some random color pixels scattered 

around, those are due to floating point errors)



GLSL Variables

• gl_LightSource[i].position.xyz – the position of light source I

• gl_FrontLightProduct[i] – object that stores the product of a light’s 
properties with the current surface’s material properties:
• Example: gl_FrontLightProduct[i].diffuse == gl_FrontMaterial.diffuse * 

gl_LightSource[i].diffuse



Custom Shader

• Anything you want! (ask us first)

• You are required to do 3 whistles worth, but after that you can earn extra 
credit.

• Shader_textured.frag and shader_textured.vert are the provided shaders, 
but they include using a texture to modulate the diffuse color. You may use 
these as reference to help on some of the options that require texture 
mapping.

• Shader Resources:
• http://www.lighthouse3d.com/tutorials/
• Unity manual on normal mapping
• Shadertoy has fragment shaders that run on a flat plane only (no vertices other than 

the 4 for the plane)

http://www.lighthouse3d.com/tutorials/
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://www.shadertoy.com/


Tips

• Start simple when you draw. Draw a few triangles first to make sure it 
shows up. Then draw a band of triangles.

• When doing glDrawElements, know that each drawcall you do is a hit on 
performance. So usually we try to have as few drawcalls as possible. If you 
have more than one drawcall for your surface of revolution, we will deduct 
points.

• You will need to add your model into the animator project 4, so try not to 
make changes to too many other files. Otherwise you might need to make 
those changes again to project 4.

• Make sure to check out the GLSL Shader Tutorials from the Modeler page. 
Core GLSL is more architecture (has an explanation of the pipeline and 
shading stages), and GLSL 1.2 is what we're using (has toon shader tutorial 
etc).

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/


Tips

• If you have additional shaders, make sure to call shader.Load() from the Scene's 
Load() method. The "Reload Textures and Shaders" button will call the Scene's 
Load() method, which calls the .load() of texture and shader.

• Your modeler is the artifact. This means by the due date for the binary, you need 
to have your hierachical model done. Special instructions are available for 
submitting your modeler as an artifact by the artifact due date.

• Make sure to check your Pointlight shader using the solution's "Shader
Difference". Put your "shader.frag" and "shader.vert" into the same folder as the 
solution.

• You can check your texture mapping in the skeleton by using the "none" shader
with texture enabled. (or you can add the reference textured shader)

• Shaders are hard to debug as there is no “print” statement in GLSL. You must use 
colors to identify what went wrong, and think about why they might appear that 
way.


