Modeler Help

Outline

* Introduction
 Surface of Revolution
* Hierarchical Modeling
e Blinn-Phong Shader

e Custom Shader(s)

Objects in the Scene

Controls of the object
selected in the Scene.

Currently the Scene itself
is selected.

i Modeler — O *

[Fne View Animate

FlScene |

- Point Light ene Vie onta 0 odel and lig
- Directional Light

- Sample Model

Use Texture -
[1Show Reference Unit Sphere
Model Shape:

() Sphere B otate the vie
O Cube D
(_»Cylinder
(_:Torus addile b ONn O
i ilcosahedron

() Teapot

i_1Revolution

(@ Sample Model

Shader To Use:

@ MNone

(_'My Shader

Rotate Basic Shape X

| o | 0 |
Rotate Basic Shape Y

o 0 |

Brightness

(0] D

Difruse Color
rgb | % | [
| ‘H 11000 | i

Menu

Options

IFI8 Vview Animate

Load Revolution Curve File:

|| Load Revolution Curve File
|| Load Texture File

{| Save Raytracer File

Save Image

| Select a .apts file to use as a
profile curve for Surface of
Revolution

/| Reload Textures and Shaders

| Exit

Load Texture File:
Loads another texture to use
instead of checkers

Save Image:
Saves a snapshot of your
scene view

WigW Animate

|@ Normal
1) Flat Shaded
10 Wireframe

3(_» High Quality
| @ Medium Quality
3 Low Quality
1 Poor Quality

(1 Show Light/Camera Markers

Shading Mode:
Try this out on the sphere, or the
surface of revolution

Quality:
Determines the number of
subdivisions and polygons to use

Show Light/Camera Markers:
Draws the XYZ Axes in the view
and markers for the lights

Surface of Revolution

* Write OpenGL code to draw a surface by rotating a profile curve

=
|

¥

* You need to calculate the following for each vertex:
e Texture Coordinates (UV)
* Normal
* Position

* Put your code in void drawRevolution (std::vector<Point2d> *pts, int divisions, double
scale) in modelerdraw.cpp

* Divisions determines the number of slices

* The skeleton Ul calls void drawrRevolution (double scale). This implementation is a

naive and incorrect one, but illustrates how curve files can be changed into
geometry.

* You should replace the code that draws the revolution incorrectly with a call to your
method.

Curve Editor

* If it helps to have a simpler profile curve
while testing, you can draw your own
profile curve.

e The Curve Editor tool is linked on the
project page.

 Ctrl+Left click to add points on one side

e Save the dense point samples into a
.apts file.

 Load Revolution Curve File in Modeler

Slicing it into Triangle Bands 1

e Divide the surface into “bands”

* Compute vertex positions and
normal
* Using sin(), cos(), in C++ code

e See the “Surfaces of Revolution”
lecture slides for how

* Connect the dots with OpenGL
triangles

Drawing the Triangles

Triangle Mesh
* Build a triangle mesh and send it to OpenGL | _ =~ | .y
dge &
e Construct an array for every piece of vertex N\ v
information: L. N NS
* Vertex pOSItIOﬂ array v e
* Vertex normal array Vertex "

* Vertex UV array
* Elements array (the faces of the triangles)

* Use ONE gIDrawElements call with GL_ TRIANGLES (required!)

* You may use glBegin/glEnd for testing shapes, but do not use them in the final
submitted code!

* You may not use GL_ QUAD_STRIP or GL_TRIANGLE_STRIP either.

Example (copy this codel)

Notice the data supplied into
the arrays are always in the
same order.

If the vertices positions are
supplied as {V1, V2, V3, v4},
the normal must also be
{N1, N2, N3, N4}, and the
texture coordinates

{T1, T2, T3, T4}

This is an overly simplified example of

drawing a plane using glDrawElements.

The plane consists of two connecting
triangles and the normal vectors of all
vertices are pointing up.

// preparing the data for the vertices’ positions

11111

// normal directions

GLfloat normals[12] = {0.1,0, 0,1,0,0,1,0,0.1,0}:
/I texture coordinates

GLfloat texture uv[8]=10,0,0.1, 1,0, 1,1},

// vertex indices in order to form triangles

// (order of the vertices follows the right hand rule)
const int indices length =6;

GLuint indices[indices length]={ 10,2, 1,23 };

Triangle 1 is defined as V1,VO,V2.
Triangle 2 is defined as V1,V2,V3.

‘-f1=(0,0,-1)l _
VN

v0=(0,0,0) v2=(1,0,0)

I v3=(1,0.-1)

glEnableClientState(GL. VERTEX ARRAY);
glEnableClientState(GL. NORMAL ARRAY);
glEnableChentState(GL_TEXTURE COORD_ ARRAY);
glVertexPointer(3, GL FLOAT, 0, vertices),
glNormalPointer(GL FLOAT,0,normals);
glTexCoordPointer(2,GL_FLOAT.(0,texture_uv);
glDrawElements(GL TRIANGLES, indices length
,GL_UNSIGNED _INT, indices);
glDisableClientState(GL_TEXTURE COORD_ARRAY).
glDisableClientState(GL NORMAL ARRAY);
glDisableClientState(GL VERTEX ARRAY);

Building the Faces

e Order Matters!!

* Depending on the order the faces
are constructed, OpenGL will
decide which face is the “front”
and which is the “back”.

* Backfaces are not drawn by
default (they are “culled”).

V3 V2

The triangle on the left has a CCW winding order so it will be
visible on the screen. The triangle on the right has a CW
winding order so you will not see it render on the screen.

Texture Mapping on

* To compute the UV Texture Coordinates, the basic
idea is to remap the arclength (curve distance) and
longitude to the range 0-1. 0,0}

* i.e. longitude for a vertex on the surface can be from 0-360
degrees. The u coordinate can be from 0O-1.

* See the lecture slides on “Texture Mapping” for a more
detailed explanation

e Each vertex for your surface of revolution must have:
* Vertex Position

e Vertex Normal
e Texture Coordinate Pair

{1, 0}

u,v €[o,1]

Hierarchical Modeling

* You must make a character with:
2 levels of branching (see project page)
* Something drawn at each level
* You will be using this model for your animator animation!

* Meaningful controls
 The more controls you add the better. It will make it easier to animate

* You will need to create your own model class

Creating your own model

e Create a new class that inherits
from “Model”

* See sample.cpp and sample.h for an
example of this.

e OQverride the draw method to draw
your model

* You can use drawBox, drawCylinder in
Modelerdraw.cpp as references

* You will need to add properties to
control it

Kinds of properties (in
properties.h):
BooleanProperty = checkbox
RangeProperty = slider
RGBProperty = color
ChoiceProperty = radio buttons
Need to add it to:
Class definition
Constructor
Property list
See sample.cpp for example

In(Specular Exponent)
E) 0]
Scene Ambient Light

[_JUse Checkered Texture
Shader To Use
(@ None

(_ Student Shader
(_)Solution Shader

rgb | % |
0.100 |
0.100 |

Model Shape

Creating your own model e
T,
icosahedron
* You will need to then add it as a member of scene.cpp e
* Scene has a method draw() that draws the floor, and a Flse My Shades
shape depending on the “Model Shape:” property of
the Scene.
* Add your own radio button to the end of the list and a -
case in this switch to call your model’s draw method i e)

.add(directionallight.getProperties());

* Make sure to add your model’s properties to the scene’s
properties by doing properties.add (mymodel.getProperties ()) properties.add(sample.getProperties());

* Make sure to also add any textures and shaders to
Scene::Load() to load them whenever the Load Textures

and Shaders button is clicked g-:'—-‘ Scene::load() {
* |f they are specific to your model, you can add shaders and
textures as members of your model class, override the load texture.load();

method of your model, and have scene call your model’s load. shader. load();

OpenGL is a state machine

* glEnable()/glDisable() changes state

* Once you change something, it stays that way until you change it to
something new

* OpenGLl's state includes:
* Current color
* Transformation matrices
* Drawing modes
* Light sources

OpenGL's transformation matrix

* Just two of them: projection and modelview. We'll modify modelview.
* Matrix applied to all vertices and normals

* These functions multiply transformations: glRotated(), glTranslated(),
glScaled() Applies transformations in REVERSE order from the order in

which they are called.

* Transformations are cumulative. Since they’re all “squashed” into one
matrix, you can’t “undo” a transformation.

Transformations: Going “back”

* How do we get back to an earlier transformation matrix? We can
“remember” it

* OpenGL maintains a stack of matrices.
* To store the current matrix, call glPushMatrix().
* To restore the last matrix you stored, call glPopMatrix().

Hierarchical Modeling in OpenGL

Draw the body
Use glPushMatrix() to
remember the current
matrix.
Imagine that a matrix
corresponds to a set of
coordinate axes:
By changing your
matrix, you can move,

rotate, and scale the
axes OpenGL uses.

=X

Hierarchical Modeling in OpenGL

Apply a transform: g,f
glRotated()
glTranslated()
glScaled()
Here, we apply X
glTranslated(1.5,2,0)

All points translated 1.5 Old axes
units left and 2 units up

Current axes

—> x

' -y
It's as if we moved our
coordinate axes!

Hierarchical Modeling in OpenGL

This ear thinks it was

Draw an ear.
drawn at the origin.

Transformations let us

transform objects

without changing their

geomEtryl Old axes

We didn’t have to edit y
that ear’s drawing

commands to transform
it

Current axes
L

——> x

Hierarchical Modeling in OpenGL

Call glPopMatrix() to y
return to the body’s
coordinate axes.

To draw the other ear,
call glPushMatrix()
again...

Hierarchical Modeling in OpenGL

Apply another Draw the other ear

transform...
Where will the ear be

y y
d rawn now? + Current axes
Current axes r 4 . .
-xX €1 t } | X

Old axes

Old axes

Hierarchical Modeling in OpenGL

Then, call
glPopMatrix() to return
to the body’s “axes”

Technically, you don't

need to if that second
earisthe last thingyou =
draw.

But what if you wanted
to add something else to
the body?

A pop for every push

* Make sure there’s a glPopMatrix() for every ‘
glPushMatrix()!

* You can divide your draw() function into a series of / \
nested methods, each with a push at the beginning
and a pop at the end. U

* Your model must have two levels of branching like
in this diagram. / \

 Circles are objects

* Arrows are transformations l_j a

e Call glPushMatrix() after drawing green, so you can
draw orange after drawing red

* Do the same for orange
* You must draw something at each level.

Multiple-Joint Slider

* Needs to control multiple aspects of your model.
* Example: Rotate multiple joints at once

* Don’t get too complicated!
 Wait for Animator in four weeks!

Blinn-Phong Shader

* We provide a directional light shader in OpenGL Shading Language
(GLSL). You must extend it to support point lights.

e Files to Edit:

* shader.frag — your fragment shader
* shader.vert — your vertex shader

Compare with the Sample Solution

* Modeler_solution.exe loads shader.frag and
shader.vert as the “student shader”

* |[n order to test your Blinn-Phong Point light
shader, run the solution from the same folder as
your shader.frag, and shader.vert

* Then under “Shader To Use:” you can switch between

your student shader and the solution shader to check
the differences.

* You can also use the “Shader Difference” shader,
which highlights any differences between the two.
You should end up seeing all black.

* (There may be some random color pixels scattered
around, those are due to floating point errors)

Choose shader here

i CSE 457 Modeler

|Fi|e View Animate

BScere

Point Light
Directional Light

In(Specular Exponent)

550 |
Scene Ambient Light

rgb =
0.100
0.100

i |0.100

Use Checkered Texture
Shader To Use

i_’Student Shader
()Solution Shader

GLSL Variables

gl _LightSourceli].position.xyz — the position of light source |
e gl FrontLightProduct[i] — object that stores the product of a light’s

properties with the current surface’s material properties:

 Example: gl FrontLightProduct[i].diffuse == gl FrontMaterial.diffuse *
gl _LightSourcel[i].diffuse

Custom Shader

e Anything you want! (ask us first)

* You are required to do 3 whistles worth, but after that you can earn extra
credit.

e Shader_textured.frag and shader_textured.vert are the provided shaders,
but they include using a texture to modulate the diffuse color. You may use
these as reference to help on some of the options that require texture

mapping.
 Shader Resources:

e http://www.lighthouse3d.com/tutorials/

* Unity manual on normal mapping

» Shadertoy has fragment shaders that run on a flat plane only (no vertices other than
the 4 for the plane)

http://www.lighthouse3d.com/tutorials/
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://www.shadertoy.com/

Tips

* Start simple when you draw. Draw a few triangles first to make sure it
shows up. Then draw a band of triangles.

* When doing glDrawElements, know that each drawcall you do is a hit on
Eerformance. So usually we try to have as few drawcalls as possible. If you
ave more than one drawcall for your surface of revolution, we will deduct
points.

* You will need to add your model into the animator project 4, so try not to
make changes to too many other files. Otherwise you might need to make
those changes again to project 4.

* Make sure to check out the GLSL Shader Tutorials from the Modeler page.
Core GLSL is more architecture (has an explanation of the pipeline and
sha)ding stages), and GLSL 1.2 is what we're using (has toon shader tutorial
etc).

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/

Tips

* If you have additional shaders, make sure to call shader.Load(? from the Scene's
Load8 method. The "Reload Textures and Shaders" button will call the Scene's
Load() method, which calls the .load() of texture and shader.

* Your modeler is the artifact. This means by the due date for the binary, you need
to have your hierachical model done. Special instructions are available for
submitting your modeler as an artifact by the artifact due date.

* Make sure to check your Pointlight shader using the solution's "Shader
Dh;ference". Put your "shader.frag" and "shader.vert" into the same folder as the
solution.

* You can check your texture mapping in the skeleton by using the "none" shader
with texture enabled. (or you can add the reference textured shader)

» Shaders are hard to debug as there is no “print” statement in GLSL. You must use
colors to identify what went wrong, and think about why they might appear that
way.

