Parametric surfaces

Brian Curless
CSEP 557
Fall 2016
Reading

Required:

- Angel readings for “Parametric Curves” lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.

Optional

Mathematical surface representations

- Explicit \(z = f(x, y) \) (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- Implicit \(g(x, y, z) = 0 \)

- Parametric \(S(u, v) = (x(u, v), y(u, v), z(u, v)) \)
 - For the sphere:
 \[
 x(u, v) = r \cos 2\pi v \sin \pi u \\
 y(u, v) = r \sin 2\pi v \sin \pi u \\
 z(u, v) = r \cos \pi u
 \]

As with curves, we’ll focus on parametric surfaces.
Constructing surfaces of revolution

Given: A curve $C(v)$ in the xy-plane:

$$C(v) = \begin{bmatrix} C_x(v) \\ C_y(v) \\ 0 \\ 1 \end{bmatrix}$$

Let $R_y(\theta)$ be a rotation about the y-axis.

Find: A surface $S(u, v)$ which is $C(v)$ rotated about the y-axis, where $u, v \in [0, 1]$.

Solution: $S(u, v) = R_y(2\pi u) C(v)$
General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.
Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. **Fixed** (or **static**): Just translate O_c along $T(v)$.

2. **Moving**. Use the **Frenet frame** of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.
Frenet frames

Motivation: Given a curve \(T(\nu) \), we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

- **Tangent**: \(\mathbf{t}(\nu) = \text{normalize}[T'(\nu)] \)
- **Binormal**: \(\mathbf{b}(\nu) = \text{normalize}[T'(\nu) \times T''(\nu)] \)
- **Normal**: \(\mathbf{n}(\nu) = \mathbf{b}(\nu) \times \mathbf{t}(\nu) \)

As we move along \(T(\nu) \), the Frenet frame \((\mathbf{t}, \mathbf{b}, \mathbf{n}) \) varies smoothly.
Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the **normal plane**.
- Place O_c on $T(v)$.
- Align x_c for $C(u)$ with b.
- Align y_c for $C(u)$ with $-n$.

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?
Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(\nu)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(\nu)$.
- ...
Tensor product Bézier surfaces

Given a grid of control points V_{ij}, forming a control net, construct a surface $S(u, v)$ by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_0(u),..., V_n(u)$.
- treating $V_0(u),..., V_n(u)$ as control points for a curve parameterized by v.
Tensor product Bézier surfaces, cont.

Let’s walk through the steps:

Which control points are always interpolated by the surface? 4 corners
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

\[Q(u) = \sum_{i=0}^{n} V_i b_i(u) \]

A tensor product Bézier surface can be written as:

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i(u) b_j(v) \]

In the previous slide, we constructed curves along \(u \) and then along \(v \). This corresponds to re-grouping the terms like so:

\[S(u,v) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n} V_{ij} b_i(u) \right) b_j(v) \]

But, we could have constructed them along \(v \), then \(u \):

\[S(u,v) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} V_{ij} b_j(v) \right) b_i(u) \]
Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

- treat rows of \(B \) as control points to generate Bézier control points in \(u \).
- treat Bézier control points in \(u \) as B-spline control points in \(v \).
- treat B-spline control points in \(v \) to generate Bézier control points in \(u \).
Tensor product B-spline surfaces, cont.

Which B-spline control points are always interpolated by the surface?
Tensor product B-splines, cont.

Another example:
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.
Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by **trimming** the \(u-\nu \) domain.

- Define a closed curve in the \(u-\nu \) domain (a **trim curve**)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.
Summary

What to take home:

• How to construct swept surfaces from a profile and trajectory curve:
 • with a fixed frame
 • with a Frenet frame
• How to construct tensor product Bézier surfaces
• How to construct tensor product B-spline surfaces