Affine transformations

Brian Curless
CSEP 557
Fall 2016

Reading

Required:
¢ Angel 3.1,3.7-3.11

Further reading:

+ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x; y; z’) =f(x y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, y), in the plane or p = (x, y;, 2)
in 3D space

X
* as column vectors |: :|

* asrow vectors

Canonical axes

L head 1ale

rlj /?&r A,S

Vector length and dot products
v

vxl “v\\:W

\/ -
w Vv 1‘”
V vy U\-V"U\XVWMYVWM%
. ax
n ?w\ ey = W
uz

W\ ; VA AQ

WVEUWTYV =V wE VI

a-v = Jlul fvl) 0

M&: M_\l wv=0 & w_Lv (/"“_fk“ﬂw“\
e (il vl %o\
OV = 056

Vector cross products \ A
RN -
% @ o e U

J ~)
VX _ {f %/
v= e
v W Ue 1{ + <uy,< - “)c‘/z\ YA
“ P] (g "2
CMX\/\ =0
([&\(\/\ ’ \/ - O
XV =-VAU

v ‘; ;/ i v
‘g N / ¢y Z ! A")

(V.= B ’\ A = — o /\>
A’[\Lh A&k z U= ¥

Vo <”Ml|)llv1[”f‘0>

Representation, cont.

We can represent a 2-D transformation // by a

matrix [a b} ('A‘B—T; (&T AT
c d
~ !
(AR) B4
If p is a column vector, M goes on the left: (AB\’IZAB\ T

?I:MP x+tlo | T
FHE) (5] -
If p is a row vector, M goes on the right: A

lszT

We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x' a bjx
y'| L dly

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements g, b, ¢ d...

Identity

Suppose we choose a=d=1, b=c=0-

+ Gives the identity matrix:
4V [0 [»c _ *}
[7’ '[o J Yl \Y

+ Doesn't move the points at all

9 10
Scaling » trcor ar MH'J;W\
Suppose we set b=c=0, but let a and ¢ take on any
positive value: Suppose we keep b=c=0, but let either a or d go
tive.
+ Gives a scaling matrix: negative
a o Examples:
0 d
+ Provides differential (non-uniform) scaling in x
and y: ' ax
- I L
yi=dy {o 1} AR 0 -
y y y v Lo][vol<|-t?
§ 1 { l O |]o- 0L
unForm Scalih A h B
2 2 D { 27 J R(/BOOS
1 D 1 [2\/1 E7 X
x Tt
2 2
o NV
,_‘ j y X ﬂMﬂAﬂl'b’"
D 172 0 U’& > I; sca‘ws
2 0 2 Y 1
1
4t x
12 11 12

Sheoc

Now let's leave a=d'=1 and experiment with b...

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:

The matrix
1 b
a b
[0 J [C d}[P ar sl=[p' a r s
gives:
x'=x+by [avelo 11 0]_[0 a a+b b
y'=y ‘\c/d001 11710 ¢ c+d d
(o) — 1 ﬁ{ N
[
y 4
y ¥
at - r—‘
11 y\,& _ X+ \{ [C id
: ! {0 1} i ! /
1 S r
X X) [4
. ! 2 m ﬁ]Tl
p q X -
1 s Pl
13 14
Effect on unit square, cont. Rotation
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
¢ Origin invariant under M about the origin”:
* M can be determined just by knowing how the ,
corners (1,0) and (0,1) are mapped l
* g and d give x-and y-scaling
¢ b and ¢ give x- and y-shearing 1
1 x x
1 Cos©
Nl
0 ~sMd
{J—){(ﬁﬁ’
Thus,)
(056 -SNe
M=R(0)= ‘
sing oG
16

15

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

X
X

Mk
Y 1

Adding the third “w"” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:

/’L ! 71 x' X 10 t][x X +tx
rans|aTin y =Tl |=[o 1 g |y = LYY
w' 1] 100 11 |
y ¥
10 1
7
13 0 1 12
1 1 L 0 1 }
x ,l ! X
1 [2
17 .. gives translation! 18
Anatomy of an affine matrix Rotation about arbitrary points 4o
Until now, we have only considered rotation about the R[b‘ [”& :i; >
. N
The addition of translation to linear origin.

- ; N . 6 0
transformations gives us affine transformations. With homogeneous coordinates, ¥ou can specify a rotation \
In matrix form, 2D affine transformations always by §, about any point q = [g, g,1" with a matrix.
looklike this: A b A X Let’s do this with rotation and translation matrices of the) (40

a bt C 4t form R(@) and T(t), respectively. o 1
At % R(O.
M=|c d t, |= e s | o 0 |
0 o 0 01 [- Yo y y y
2D affine transformations always have a bottom ax + by +1x I;‘
row of [00 1]. e +J7+’t\ ,}\) D A .
\ i x 1 x ' x
An “affine point”is a “linear point” with an added —))
necoordinate which is always 1: M 7Z IC"Q R (@5 T (‘L\
x Ox t b\/ L)‘
Py od ’t* o = —
P =['{”}: J]/ [CX 1 1. Translate q to origin M = \(LD ?\(% [(’0
2. Rotate . L +
Applying an affine transformation gives another X Of&u o—\ X%)Mﬂ\ (3 \/’mgbr w
affine point: XVA 3. Translate back —_
Apy, +t
Mp g :[|1 }
19 20

Points and vectors

Vectors have an additional coordinate of w=0. Thus, a
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine

matrix? A Yyt b\/
L i{ ¢ \Ix 4 Vy

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:

x] [s, 0 0 0]x
These representations reflect some of the rules of affine y' 0 s, 0 Ofy
operations on points and vectors: Pt 6O =
D(%; b& 1?{“6&1 z 0 0 s, 0|z
vector + vector —» VI | atg 1 0 0 0 11
scalar - vector — \/GC:”’r
int - poi ectol
po.lnt point — V ¢ ps\’ﬁ‘ ﬁ oz*r@" y
point + vector —> fu.nf = +€ =0 y
point+point — chmS Vet
A pl) scalar - vector + scalar-vector —» V€0 chsos QIBC
scalar-point + scalar-point — # deptndg c .
/“ ’P ?:D(A*gsfk
o One useful combination of affine operations is:
ful b f aff \ z
A,,
p(t)=p, +tu
L (#9) oo\ 2 g
. . -
Q: What does this describe? ‘e [O oo\ \> - “ﬂ\\“(\
21 22
Translation in 3D Rotation in 3D (cont’d) fR’T =R

x' 10 0 ¢t |x
y'1 |0 1 0ty
oo 1tz
1 00 0 11
y Y
ac b T
P z v
Jcs(
‘2z
L

23

These are the rotations about the canonical axes:

[0 0 0 u v w
0 cosa —sina 0O
Rx(a): .
0 sina cosa O
o o 0o 1] wus| WvEd
cosff 0 sing 0 N WWZp
o 1 0 0 e
Ry(B)= sinf 0 cosp 0 ww =] VW 0
Ll o o o 1]
C(.)S;/ ~siny 0.0 Use right hand rule ?TR: ’ L‘j nv w
R, ()= siny cosy 0 O v T
z 0 0 10 e
| o 0 01
_luy w'vww R
A general rotation can be specified in terms of a = A v v
product of these three matrices. How else might VT T wTw
you specify a rotation? - V4x Wn W

P2} T “y VAVESTY,
ol e £

Shearing in 3D

Shearing is also more complicated. Here is one
example:

- N < X
o o o =
©c o -
© - o o

We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines
+ Parallel lines remain parallel
« (when transforming from N dimensions to N dimensions)
+ Midpoints map to midpoints (in fact, ratios are
always preserved) -

Nﬁ' M’S{\"(

25 26
Affine transformations in OpenGL Summary
What to take away from this lecture:
OpenGL maintains a“modelview” matrix that holds .
the current transformation M. + All the names in boldface.
. . . . + How points and transformations are represented.
The modelview matrix is applied to points (usually + Howt te lenaths. dot broduct q
vertices of polygons) before drawing. OW10 compute [engths, dot products, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadIdentity () Ml . What. all the elements of a 2x2tr.ansformation
— set M to identity matrix do ar.1d how these generalize to 3x 3
transformations.
+ glTranslatef(t,, t,, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t,, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (6, x, y, z) M < MR + The mathematical properties of affine
- rotate by angle 6 about axis (x, y, z) transformations.
¢ glScalef(s,, s, s,) M <~ MS
- scale by (s, s,/ 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
27 28

