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Reading

Required:
¢ Angel 3.1,3.7-3.11

Further reading:

+ Angel, the rest of Chapter 3
+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed.,
McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x; y; z’) =f(x y, 2).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

Vector representation

We can represent a point, p = (x, y), in the plane or p = (x, y;, 2)
in 3D space

X
* as column vectors |: :|

* asrow vectors
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Representation, cont.

We can represent a 2-D transformation // by a

matrix [a b} ('A‘B—T; (&T AT
c d
~ !
(AR) B4
If p is a column vector, M goes on the left: (AB\’IZAB\ T

?I:MP x+tlo | T
FHE ) (5] -
If p is a row vector, M goes on the right: A

lszT

We will use column vectors.




Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:
x' a bjx
y'| L dly

x'=ax+by

So:

y'=cx+dy

We will develop some intimacy with the elements g, b, ¢ d...

Identity

Suppose we choose a=d=1, b=c=0-

+ Gives the identity matrix:
4V [0 [»c _ *}
[7’ '[o J Yl \Y

+ Doesn't move the points at all
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Suppose we set b=c=0, but let a and ¢ take on any
positive value: Suppose we keep b=c=0, but let either a or d go
tive.
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Sheoc

Now let's leave a=d'=1 and experiment with b...

Effect on unit square

Let's see how a general 2 x 2 transformation M affects
the unit square:

The matrix
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Effect on unit square, cont. Rotation
Observe: From our observations of the effect on the unit square,
. X it should be easy to write down a matrix for “rotation
¢ Origin invariant under M about the origin”:
* M can be determined just by knowing how the ,
corners (1,0) and (0,1) are mapped l
* g and d give x-and y-scaling
¢ b and ¢ give x- and y-shearing 1
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Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling

+ Rotation

+ Reflection
+ Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a
third component to every point:

X
X
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Y 1

Adding the third “w"” component puts us in
homogenous coordinates.

And then transform with a 3 x 3 matrix:
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Anatomy of an affine matrix Rotation about arbitrary points 4o
Until now, we have only considered rotation about the R[b‘ [”& :i; >
. N
The addition of translation to linear origin.

- ; N . 6 0
transformations gives us affine transformations. With homogeneous coordinates, ¥ou can specify a rotation \
In matrix form, 2D affine transformations always by §, about any point q = [g, g,1" with a matrix.
looklike this: A b A X Let’s do this with rotation and translation matrices of the ) (40
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Points and vectors

Vectors have an additional coordinate of w=0. Thus, a
change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine

matrix? A Yyt b\/
L i{ ¢ \Ix 4 Vy

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D
ones.

For example, scaling:

x] [s, 0 0 0]x
These representations reflect some of the rules of affine y' 0 s, 0 Ofy
operations on points and vectors: Pt 6O =
D(%; b& 1?{“6&1 z 0 0 s, 0|z
vector + vector —» VI | atg 1 0 0 0 11
scalar - vector — \/GC:”’r
int - poi ectol
po.lnt point  — V ¢ ps\’ﬁ‘ ﬁ oz*r@" y
point + vector —> fu.nf = +€ =0 y
point+point  — chmS Vet
A pl) scalar - vector + scalar-vector —» V€0 chsos QIBC
scalar-point + scalar-point  — # deptndg c .
/“ ’P ?:D(A*gsfk
o One useful combination of affine operations is:
ful b f aff \ z
A,,
p(t)=p, +tu
L (#9) oo\ 2 g
. . -
Q: What does this describe? ‘e [O oo\ \> - “ﬂ\\“(\
21 22
Translation in 3D Rotation in 3D (cont’d) fR’T =R
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These are the rotations about the canonical axes:
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Shearing in 3D

Shearing is also more complicated. Here is one
example:
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We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine
transformations:

¢ Lines map to lines
+ Parallel lines remain parallel
« (when transforming from N dimensions to N dimensions)
+ Midpoints map to midpoints (in fact, ratios are
always preserved) -
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Affine transformations in OpenGL Summary
What to take away from this lecture:
OpenGL maintains a“modelview” matrix that holds .
the current transformation M. + All the names in boldface.
. . . . + How points and transformations are represented.
The modelview matrix is applied to points (usually + Howt te lenaths. dot broduct q
vertices of polygons) before drawing. OW10 compute [engths, dot products, and cross
products of vectors, and what their geometrical
It is modified by commands including: meanings are.
+ glLoadIdentity () Ml . What. all the elements of a 2x2tr.ansformation
— set M to identity matrix do ar.1d how these generalize to 3x 3
transformations.
+ glTranslatef(t,, t,, t,) M« MT + What homogeneous coordinates are and how
- translate by (t,, t,, t,) they work for affine transformations.
+ How to concatenate transformations.
¢ glRotatef (6, x, y, z) M < MR + The mathematical properties of affine
- rotate by angle 6 about axis (x, y, z) transformations.
¢ glScalef(s,, s, s,) M <~ MS
- scale by (s, s,/ 5,)
Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.
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