Affine transformations

Brian Curless CSEP 557 Fall 2016 Reading

Required:

• Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

1

Geometric transformations

Geometric transformations will map points in one space to points in another: $(x', y', z') = \mathbf{f}(x, y, z)$.

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

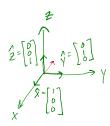
Vector representation

We can represent a **point**, $\mathbf{p} = (x, y)$, in the plane or $\mathbf{p} = (x, y, z)$ in 3D space

• as column vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} x \\ z \end{bmatrix}$

• as row vectors $\begin{bmatrix} x & y \end{bmatrix}$

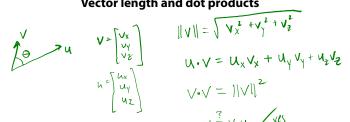
Canonical axes



right-harded coord. System
$$V = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = v_x \hat{x} + v_y \hat{y} + v_z \hat{z}$$

right-hand rule for
$$\Delta$$
's

Vector length and dot products



$$V = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$h = \begin{bmatrix} h_x \\ u_y \\ u_z \end{bmatrix}$$

$$|V|| = |V_x | |V_y | |V_y |$$

$$|U \cdot V| = |U_x | |V_x | + |U_y |$$

$$u \cdot V = u^T V = V^T u = V \cdot u$$

$$u \cdot v = 0 \iff u \perp v \quad (\text{orthiginal})$$

$$\hat{u} \cdot \hat{v} = \cos \Theta$$

5

6

or cross products
$$u_{x}v = \det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ \hat{y} & \hat{y} \end{bmatrix} = (u_{y}v_{x} - u_{z}v_{y}) \hat{x} \\ + (u_{z}v_{x} - u_{x}v_{z}) \hat{y} \\ + (u_{x}v_{y} - u_{y}v_{x}) \hat{z} \end{bmatrix}$$

$$(u \times V) \cdot U = 0$$

$$(u \times V) \cdot V = 0$$

$$||u \times v|| = ||u|| ||v|| \sin \theta = Area (\square_{u,v}) = 2 Area (\Delta_{yv})$$

$$\|\hat{\mathbf{u}} \times \hat{\mathbf{v}}\| = 1 \iff \hat{\mathbf{u}} \perp \hat{\mathbf{v}}$$

$$\begin{aligned}
\mathbf{u} &= \mathbf{8} - \mathbf{A} \\
\mathbf{v} &= \mathbf{c} - \mathbf{A} \\
\mathbf{Area} \left(\frac{\mathbf{A}_{AK}}{\mathbf{A}_{K}} \right) &= \frac{1}{2} \|\mathbf{u} \times \mathbf{v}\| = \delta \iff \mathbf{u} = \mathbf{v} \\
\mathbf{v} &= \mathbf{v} &= \mathbf{v} \\
\mathbf{v} &= \mathbf{v} &$$

Representation, cont.

We can represent a **2-D transformation** M by a matrix

$$\left(\mathcal{A} \mathcal{B} \right)_{\perp} = \mathcal{B}_{\perp} \mathsf{A}_{\perp}$$

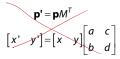
$$(AB)^{-1} = B^{-1}A^{-1}$$

If \mathbf{p} is a column vector, M goes on the left:

$$\mathbf{p'} = M\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} \qquad (A^T)^{-1} = (A^{-1})^T$$

If **p** is a row vector, M^T goes on the right:



We will use column vectors.

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So:

$$x' = ax + by$$

$$y' = cx + dy$$

We will develop some intimacy with the elements a, b, c, d...

Identity

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$\begin{bmatrix} \checkmark \\ \gamma' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \times \\ \gamma \end{bmatrix} = \begin{bmatrix} \times \\ \gamma \end{bmatrix}$$

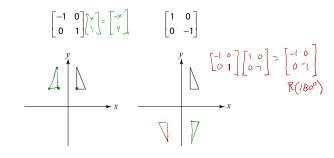
• Doesn't move the points at all

9

Mirror or Reflection

Suppose we keep b=c=0, but let either a or d go negative.

Examples:



Scaling

Suppose we set b=c=0, but let a and d take on any positive value:

• Gives a scaling matrix:

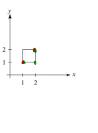
$$\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

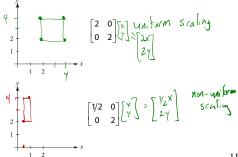
• Provides differential (non-uniform) scaling in x

and y:

$$x' = ax$$

 $y' = dy$





Shear

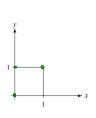
Now let's leave a=d=1 and experiment with b...

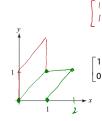
The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

gives:

$$x' = x + by$$
$$y' = y$$



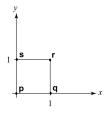


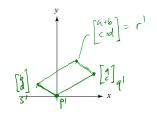
Effect on unit square

Let's see how a general 2 x 2 transformation ${\it M}$ affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s} \end{bmatrix} = \begin{bmatrix} \mathbf{p'} & \mathbf{q'} & \mathbf{r'} & \mathbf{s'} \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \\ q' & s'$$





13

Effect on unit square, cont.

Observe:

- Origin invariant under *M*
- *M* can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and d give x- and y-scaling
- b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} cos \theta \\ sn \theta \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} \sim SiND \\ C6SD \end{bmatrix}$$

Thus,

$$M = R(\theta) = \begin{cases} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{cases}$$

15

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

17

Anatomy of an affine matrix

The addition of translation to linear transformations gives us affine transformations.

In matrix form, 2D affine transformations always look like this:

$$M = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & \mathbf{t} \\ 0 & 0 & 1 \end{bmatrix}$$

2D affine transformations always have a bottom row of [0 0 1].

An "affine point" is a "linear point" with an added w-coordinate which is always 1:

$$\mathbf{p}_{\mathsf{aff}} = \begin{bmatrix} \mathbf{p}_{\mathsf{lin}} \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Applying an affine transformation gives another affine point:

$$M\mathbf{p}_{\mathsf{aff}} = \begin{bmatrix} A\mathbf{p}_{\mathsf{lin}} + \mathbf{t} \\ 1 \end{bmatrix}$$

Homogeneous coordinates

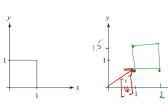
Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Adding the third "w" component puts us in homogenous coordinates.

And then transform with a 3 x 3 matrix:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \leftarrow t_y \\ y \leftarrow t_y \\ 1 \end{bmatrix}$$



... gives translation!

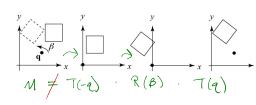
18

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation by β , about any point $\mathbf{q} = [q_{\mathbf{X}} \ q_{\mathbf{V}}]^{\mathsf{T}}$ with a matrix.

Let's do this with rotation and translation matrices of the form $R(\theta)$ and $T(\mathbf{t})$, respectively.



- 1. Translate **q** to origin

- 2. Rotate
- 3. Translate back

M=T(q) R(B)T(-q)
order of xforms is important

0 1 1/2

Points and vectors

Vectors have an additional coordinate of w = 0. Thus, a change of origin has no effect on vectors.

 $\mathbf{Q}\!:\!$ What happens if we multiply a vector by an affine

$$\begin{bmatrix} a & b & t \\ c & d & t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} = \begin{bmatrix} a & v_x + b & v_y \\ c & v_x + d & v_y \\ 0 \end{bmatrix}$$

These representations reflect some of the rules of affine

operations on points and vectors:

vector + vector
$$\rightarrow \text{vector}$$

scalar · vector $\rightarrow \text{vector}$

point - point $\rightarrow \text{vector}$

point + vector $\rightarrow \text{ps.in}$

point + point $\rightarrow \text{chaps}$

scalar · vector + scalar · vector $\rightarrow \text{vector}$

scalar · point + scalar · point $\rightarrow \text{j+lepends}$

One useful combination of affine operations is:

$$\mathbf{p}(t) = \mathbf{p}_o + t\mathbf{u}$$

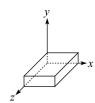
$$\{ \{ (-\infty)^{\infty} \} = [n] \}$$

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

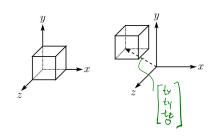
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y \\ z \\ 1 \end{bmatrix}$$



22

Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



Rotation in 3D (cont'd)

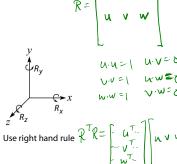
These are the rotations about the canonical axes:

$$R_{X}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{Y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{Z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

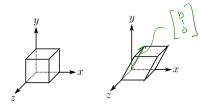
A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?



Shearing in 3D

Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- Parallel lines remain parallel
 - (when transforming from N dimensions to N dimensions)
- Midpoints map to midpoints (in fact, ratios are always preserved)

ratio =
$$\frac{\|\mathbf{pq}\|}{\|\mathbf{qr}\|} = \frac{s}{t} = \frac{\|\mathbf{p'q}\|}{\|\mathbf{q'r'}\|}$$

Affine

Not affine

25

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation ${\bf M}$.

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

• glTranslatef
$$(t_x, t_y, t_z)$$
 $M \leftarrow MT$
- translate by (t_x, t_y, t_z)

Note that OpenGL adds transformations by *postmultiplication* of the modelview matrix.

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.