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Reading

Required:

 Shirley 10.9, 10.11 (online handout)

Further reading:

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. 

 Robert L. Cook, Thomas Porter, Loren 
Carpenter.
“Distributed Ray Tracing.”  Computer Graphics 
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-
145. 1984.

 James T. Kajiya. “The Rendering Equation.”  
Computer Graphics (Proceedings of SIGGRAPH 
86). 20 (4). pp. 143-150. 1986.



3

Aliasing

Ray tracing is a form of sampling and can suffer from 
annoying visual artifacts... 

Consider a continuous function (x).  Now sample it at 
intervals  to give [i ] = quantize[(i )].

Q: How well does [i ] approximate (x )?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well 
approximated by the samples.
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Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be 
approximating the first lower frequency sinusoid 
again.

We say that, after sampling, the higher frequency 
sinusoid has taken on a new “alias”, i.e., changed its 
identity to be a lower frequency sinusoid.
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Aliasing and anti-aliasing in rendering

One of the most common rendering artifacts is the 
“jaggies”.  Consider rendering a white polygon against 
a black background:

We would instead like to get a smoother transition:

Anti-aliasing is the process of removing high 
frequencies before they cause aliasing.

In a renderer, computing the average color within a 
pixel is a good way to anti-alias.  How exactly do we 
compute the average color?
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Antialiasing in a ray tracer

We would like to compute the average intensity in the 
neighborhood of each pixel. 

When casting one ray per pixel, we are likely to have 
aliasing artifacts.

To improve matters, we can cast more than one ray 
per pixel and average the result.

A.k.a., super-sampling and averaging down.
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Gloss and translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:
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Distributing rays over light source area gives:

Soft shadows
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Depth of field

To simulate a camera, we can model the refraction of 
light through a lens.  This will give us a “depth of field” 
effect: objects close to the in-focus plane are sharp, and 
the rest is blurry.
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Depth of field (cont’d)

This is really similar to the pinhole camera model:

But now:

 Put the image plane at the depth you want to be in focus.
 Treat the aperture as multiple COPs (samples across the 

aperture).
 For each pixel, trace multiple viewing/primary rays for 

each COP and average the results.
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Motion blur

Distributing rays over time gives:

How can we use super-sampling and averaging down 
to get motion blur?
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Speeding it up

Brute force ray tracing is really slow!

Consider rendering a single image with:

 m  x m pixels
 k  x k supersampling
 a x a sampling of camera aperture
 n primitives
 area light sources
 s x s sampling of each area light source
 r x r rays cast recursively per intersection 

(gloss/translucency)
 d is average ray path length 

Racking up all these variables can lead to a super-slow rendering 
speed.

In practice, some acceleration technique is almost always used.

We’ve already looked at reducing d with adaptive (early) ray 
termination.  

Now we look at reducing the effect of the a, s, r, k and n terms…


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Consider Whitted vs. a brute force approach with anti-aliasing, depth of field, 
area lights, gloss…

Asymptotic # of intersection tests = 

For m =1,000, k = a = s = r = 8, n = 1,000,000,              , d = 8 … very expensive!!

Whitted
ray tracing

Brute force,
advanced 

ray tracing

Naively improving Whitted ray tracing

10

Advanced ray tracing has:

 m  x m pixels
 k  x k supersampling
 a x a sampling of 

camera aperture
 n primitives
 area light sources
 s x s sampling of each 

area light source
 r x r rays cast recursively 

per intersection 
(gloss/translucency)

 d is average ray path 
length 


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Penumbra revisited

Let’s revisit the area light source…

We can trace a ray from the viewer through a pixel, 
but now when we hit a surface, we cast rays to 
samples on the area light source.
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Penumbra revisited

We should anti-alias to get best looking results.  

Whoa, this is a lot of rays…just for one pixel!!
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Penumbra revisited

We can get a similar result with much less computation:
 Choose random location within a pixel, trace ray.
 At first intersection, choose random location on area 

light source and trace shadow ray.
 Continue recursion as with Whitted, but always choose 

random location on area light for shadow ray.
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Monte Carlo Path Tracing vs. Brute Force

We can generalize this idea to do random sampling for 
each viewing ray, shadow ray, reflected ray, etc.  This 
approach is called Monte Carlo Path Tracing (MCPT).

Monte Carlo
path tracing

Brute force,
advanced 

ray tracing
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MCPT vs. Whitted

Q: For a fixed number of rays per pixel, does MCPT 
trace more total rays than Whitted?

Q: Does MCPT give the same answer every time?

Whitted
ray tracing

Monte Carlo
path tracing



19

Noise and MCPT

You can also model diffuse interreflection by reflecting 
rays in completely random directions (and weighting the 
result of each bounce by Nd).

MCPT images tend to be noisy, especially with depth of 
field or diffuse interreflection. Reduce noise by:

 Casting many rays per pixel (lots of anti-aliasing)
 Importance sampling (choose rays that are likely to 

collect the most energy)
 Stratified sampling (distribute rays “evenly” to avoid 

accidentally casting rays that are too close together)
 Filtering the final result (e.g., fancy bilateral filtering)

[http://web.stanford.edu/~dritchie/path] [http://scratchapixel.com]
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Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily 
costly.  If there are no rapid changes in intensity at the 
pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular 
area?
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Let’s say you were intersecting a ray with a triangle 
mesh:

Straightforward method 

 intersect the ray with each triangle
 return the intersection with the smallest t-value.

Q: How might you speed this up?

Faster ray-polyhedron intersection
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Bounding Volume Hierarchies (BVHs)

We can generalize the idea of bounding volume 
acceleration with bounding volume hierarchies (BVHs).

Key: build balanced trees with tight bounding volumes.
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Non-uniform spatial subdivision: octrees

Another approach is non-uniform spatial subdivision.  
One version of this is octrees:
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Non-uniform spatial subdivision: k-d trees

Another non-uniform subdivision is k-d                  
(k –dimensional) trees:

If the planes can be non-axis aligned, then you 
get BSP (binary space partitioning) trees.

Various combinations of these ray intersections 
techniques are also possible.  

k-d tree (k = 2) k-d tree (k = 3)

[Image credits: Wikipedia.]



25

Summary

What to take home from this lecture:

 The meanings of all the boldfaced terms.
 An intuition for what aliasing is.
 How to reduce aliasing artifacts in a ray tracer
 The limitations of Whitted ray tracing (no glossy 

surfaces, etc.)
 The main idea behind Monte Carlo path tracing 

and what effects it can simulate (glossy surfaces, 
etc.)

 An intuition for how ray tracers can be 
accelerated.


