Reading

Projections

The 3D synthetic camera model

The synthetic camera model involves two components, specified independently:

- objects (a.k.a. geometry)
- viewer (a.k.a. camera)

Angel. Chapter 5

Optional

David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 3.

Imaging with the synthetic camera

The image is rendered onto an image plane or projection plane (usually in front of the camera).

Projectors emanate from the center of projection (COP) at the center of the lens (or pinhole).

The image of an object point P is at the intersection of the projector through P and the image plane.

Specifying a viewer

Camera specification requires four kinds of parameters:

- Position: the COP.
- Orientation: rotations about axes with origin at the COP.
- Focal length: determines the size of the image on the film plane, or the field of view.
- Film plane: its width and height, and possibly orientation.

3D Geometry Pipeline

4

Model space
(Object space) (Object space)
scale, translate rotate, ..

World space (Object space)
rotate, translate

Eye space (View space)

Projections

Projections transform points in n-space to m-space, where $m<n$.
In 3D, we map points from 3-space to the projection plane ($\mathbf{P P}$) along projectors emanating from the center of projection (COP).

There are two basic types of projections:

- Perspective - distance from COP to PP finite
- Parallel - distance from COP to PP infinite

Parallel and Perspective Projection

Parallel projections

For parallel projections, we specify a direction of projection (DOP) instead of a COP.

There are two types of parallel projections:

- Orthographic projection - DOP perpendicular to PP
- Oblique projection - DOP not perpendicular to PP

Perspective vs. parallel projections

Perspective projections pros and cons:

+ Size varies inversely with distance - looks realistic
- Distance and angles are not (in general) preserved
- Parallel lines do not (in general) remain parallel

Parallel projection pros and cons:

- Less realistic looking
+ Good for exact measurements
+ Parallel lines remain parallel
- Angles not (in general) preserved

Orthographic Projections

Orthographic transformation

For parallel projections, we specify a direction of projection (DOP) instead of a COP.

We can write orthographic projection onto the $z=0$ plane with a simple matrix.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Normally, we do not drop the z value right away. Why not?

Oblique projections

Two standard oblique projections:

- Cavalier projection

DOP makes 45 angle with PP
Does not foreshorten lines perpendicular to PP

- Cabinet projection

DOP makes 63.4 angle with PP
Foreshortens lines perpendicular to PP by one-half

Cavalier

Cabinet

Oblique Projections

Projection taxonomy

Properties of projections

The perspective projection is an example of a projective transformation.

Here are some properties of projective transformations:

- Lines map to lines
- Parallel lines don't necessarily remain parallel

- Ratios are not preserved

Coordinate systems for CG

- Model space - for describing the objections (aka "object space", "world space")
- World space - for assembling collections of objects (aka "object space", "problem space", "application space")
- Eye space - a canonical space for viewing (aka "camera space")
- Screen space - the result of perspective transformation (aka "normalized device coordinate space", "normalized projection space")
- Image space - a 2D space that uses device coordinates (aka "window space", "screen space", "normalized device coordinate space", "raster space")

A typical eye space

- Acts as the COP
- Placed at the origin
- Looks down the z-axis
- Screen
- Lies in the PP
- Perpendicular to z-axis
- At distance d from the eye
- Centered on z-axis, with radius s

Q: Which objects are visible?

Eye space $\boldsymbol{\rightarrow}$ screen space

Q: How do we perform the perspective projection from eye space into screen space?

Using similar triangles gives:

Eye space \rightarrow screen space, cont.

We can write this transformation in matrix form:

$$
\left[\begin{array}{l}
X \\
Y \\
Z \\
W
\end{array}\right]=M P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
$$

Perspective divide:

$$
\left[\begin{array}{c}
X / W \\
Y / W \\
Z / W \\
W / W
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]
$$

Perspective depth

Q: What did our perspective projection do to z ?
Often, it's useful to have a z around - e.g., for hidden surface calculations.

Projective Normalization

After perspective transformation and perspective divide, we apply parallel projection (drop the z) to get a 2 D image.

Vanishing points

Under perspective projections, any set of parallel lines that are not parallel to the PP will converge to a vanishing point.

Vanishing points of lines parallel to a principal axis x, y, or z are called principal vanishing points.

How many of these can there be?

Vanishing points

The equation for a line is:
$\mathbf{I}=\mathbf{p}+t \mathbf{v}=\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]+t\left[\begin{array}{c}v_{x} \\ v_{y} \\ v_{z} \\ 0\end{array}\right]$
After perspective transformation we get:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{c}
p_{x}+t v_{x} \\
p_{y}+t v_{y} \\
-\left(p_{z}+t v_{z}\right) / d
\end{array}\right]
$$

Vanishing points (cont'd)

Dividing by w :

Letting t go to infinity:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-\frac{p_{x}+t v_{x}}{p_{z}+t v_{z}} d \\
-\frac{p_{y}+t v_{y}}{p_{z}+t v_{z}} d \\
1
\end{array}\right]
$$

We get a point!
What happens to the line $\mathbf{l}=\mathbf{q}+t \mathbf{v}$?
Each set of parallel lines intersect at a vanishing point on the PP.
Q: How many vanishing points are there?

Types of perspective drawing

If we define a set of principal axes in world coordinates, i.e., the x_{w}, y_{w}, and z_{w} axes, then it's possible to choose the viewpoint such that these axes will converge to different vanishing points.

The vanishing points of the principal axes are called the principal vanishing points.

Perspective drawings are often classified by the number of principal vanishing points.

- One-point perspective - simplest to draw
- Two-point perspective - gives better impression of depth
- Three-point perspective - most difficult to draw

All three types are equally simple with computer graphics.

General perspective projection

In general, the matrix

performs a perspective projection into the plane $p x+q y+r z+s=1$.

Q: Suppose we have a cube C whose edges are aligned with the principal axes. Which matrices give drawings of C with

- one-point perspective?
- two-point perspective?
- three-point perspective?

General Projections

Suppose you have a camera with COP c, and x, y, and z axes are unit vectors i, j and k respectively. How do we compute the projection?

World Space Camera

Hither and yon planes

In order to preserve depth, we set up two planes:

- The hither (near) plane
- The yon (far) plane

Summary

Here's what you should take home from this lecture:

- The classification of different types of projections.
- The concepts of vanishing points and one-, two-, and three-point perspective.
- An appreciation for the various coordinate systems used in computer graphics.
- How the perspective transformation works.

