Image Processing

Reading

Course Reader:
Jain et. Al. *Machine Vision*Chapter 4 and 5

Definitions

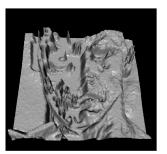
- Many graphics techniques that operate only on images
- **Image processing**: operations that take images as input, produce images as output
- In its most general form, an **image** is a function *f* from R² to R
 - f(x, y) gives the intensity of a channel at position (x, y) defined over a rectangle, with a finite range:

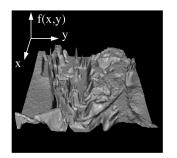
$$f: [a,b] \times [c,d] \to [0,1]$$

- A color image is just three functions pasted together:

$$f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$$

Images as Functions





What is a digital image?

- In computer graphics, we usually operate on **digital** (**discrete**) images:
 - Sample the space on a regular grid
 - **Quantize** each sample (round to nearest integer)
- If our samples are *d* apart, we can write this as:

$$f'[i, j] = Quantize(f(i \cdot d, j \cdot d))$$

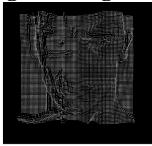
Image processing

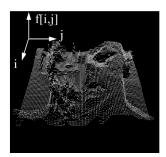
- An **image processing** operation typically defines a new image *g* in terms of an existing image *f*.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

$$g(x, y) = t(f(x, y))$$

• Example: threshold, RGB \rightarrow grayscale

Sampled digital image





Pixel Movement

• Some operations preserve intensities, but move pixels around in the image

$$g(x, y) = f(\mathbf{u}(x, y), \mathbf{v}(x, y))$$

• Examples: many amusing warps of images

Multiple input images

- Some operations define a new image g in terms of n existing images (f_1, f_2, \dots, f_n) , where n is greater than 1
- Example: cross-dissolve between 2 input images

Noise

- Common types of noise:
 - Salt and pepper noise: contains random occurrences of black and white pixels
 - **Impulse noise:** contains random occurrences of white pixels
 - Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Noise Examples

Original

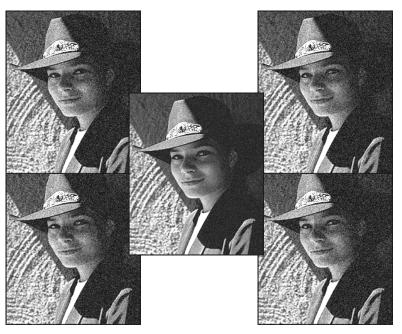
Salt and pepper noise

Impulse noise

Gaussian noise

Ideal noise reduction

Ideal noise reduction



Practical noise reduction

• How can we "smooth" away noise in a single image?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	100	130	110	120	110	0	0
0	0	0	110	90	100	90	100	0	0
0	0	0	130	100	90	130	110	0	0
0	0	0	120	100	130	110	120	0	0
0	0	0	90	110	80	120	100	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Cross-correlation filtering

• Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

• We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

• This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

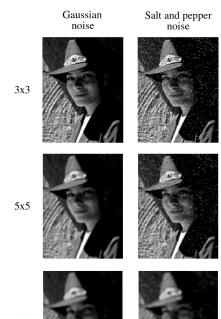
- H is called the "filter," "kernel," or "mask."
- The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]

Mean kernel

• What's the kernel for a 3x3 mean filter?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

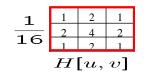
Mean Filters

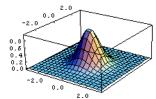


Gaussian Filtering

• A Gaussian kernel gives less weight to pixels further from

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0





• This kernel is an approximation of a Gaussian function:

$$h(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{\sigma^2}}$$

Gaussian Filters

• Gaussian filters weigh pixels based on their distance to the location of convolution.

$$h[i, j] = e^{-(i^2+j^2)/2\sigma^2}$$

- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by σ
- Gaussian functions are separable
- Convolving with multiple Gaussian filters results in a single Gausian filter

Convolution

• A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

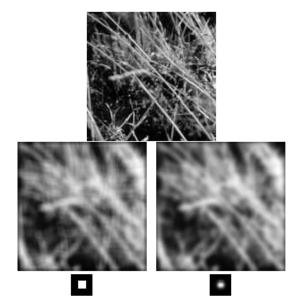
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

- It is written: $G = H \star F$
- Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Gaussian Filters

Gaussian Salt and pepper 3x3

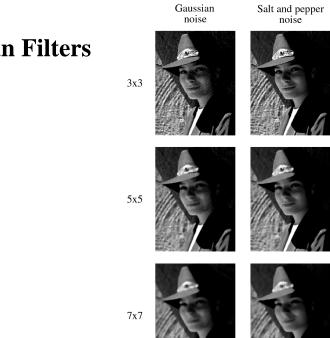
Mean vs. Gaussian filtering



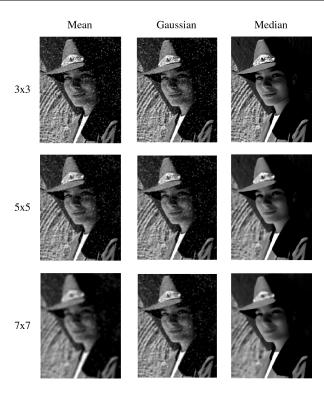
Median Filters

- A **Median Filter** operates over a $k \times k$ region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Median Filters



Gaussian



Edge Detection

- One of the most important uses of image processing is edge detection
 - Really easy for humans
 - Really difficult for computers

Step

- Fundamental in computer vision
- Important in many graphics applications

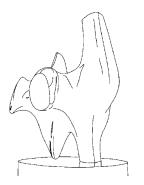
What defines an edge?

Ramp

Line

Roof

- Edge detection
 •One of the most important uses of image processing is edge detection:
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications



•How to tell if a pixel is on an edge?

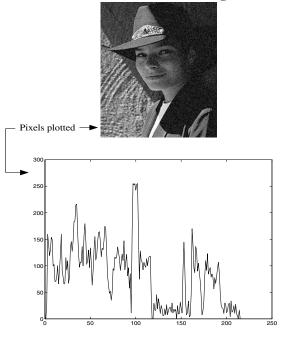
Gradient

• The **gradient** is the 2D equivalent of the derivative:

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - It's a vector
 - Points in the direction of maximum increase of f
 - Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Less than ideal edges



Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and nonedges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

• A popular gradient magnitude computation is the **Sobel operator**:

$$s_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$s_y = \left[egin{array}{ccc} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{array}
ight]$$

• We can then compute the magnitude of the vector (s_x, s_y)

Sobel Operator

Smoothed

Sx + 128

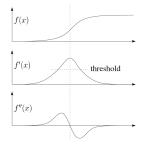
Sy + 128

Magnitude

Threshold = 64

Threshold = 128

Second derivative operators



- The Sobel operator can produce thick edges. Ideally, we're looking for infinitely thin boundaries.
- An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.
- **Q**: A peak in the first derivative corresponds to what in the second derivative?

Laplacian alternatives

0	1	0		
1	-4	1		
0	1	0		

1	ı	1	1		
1	1	-8	1		
1		1	1		

Localization with the Laplacian

• An equivalent measure of the second derivative in 2D is the **Laplacian**: $\partial^2 f \partial^2 f$

 $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

• Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:

$$\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Localization with the Laplacian

Smoothed

Laplacian (+128)

Sharpening with the Laplacian

Original

Laplacian (+128)

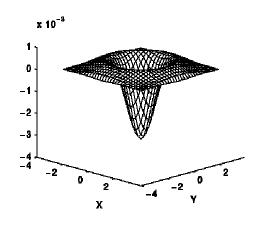
Original + Laplacian

Original - Laplacian

Summary

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, pixel movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations

Laplacian of Gaussian



0	0	3	2	2	2	9	0	0
0	2	9	5	5	5	9	2	0
9	9	5	9	0	3	5	9	9
2	5	3	-12	-23	-12	3	5	2
2	5	0	-29	-40	-29	0	5	2
2	5	3	-12	-23	-12	3	5	2
9	9	5	9	0	3	5	9	9
0	2	3	6	6	6	3	2	0
0	0	3	2	2	2	3	0	0