
1

Hidden Surface
Determination

2

Reading

• Foley et al, Chapter 15

Optional
• I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A

characterization of ten hidden surface algorithms, ACM
Computing Surveys 6(1): 1-55, March 1974.

3

The Quest for 3D

• Construct a 3D hierarchical geometric model

• Define a virtual camera

• Map points in 3D space to points in an image

• produce a wireframe drawing in 2D from a 3D object

• Of course, there’s more work to be done…

4

Introduction

• Not every part of every 3D object is visible to a particular
viewer. We need an algorithm to determine what parts of
each object should get drawn.

• Known as “hidden surface elimination” or “visible surface
determination”.

• Hidden surface elimination algorithms can be categorized
in three major ways:
– Object space vs. image space

– Object order vs. image order

– Sort first vs. sort last

5

Object Space Algorithms
• Operate on geometric primitives

– For each object in the scene, compute the part of it which isn’t obscured
by any other object, then draw.

– Must perform tests at high precision

– Resulting information is resolution-independent

• Complexity
– Must compare every pair of objects, so O(n2) for n objects

– For an m x m display, have to fill in colors for m2 pixels.

– Overall complexity can be O(kobj n2 + kdisp m2).

– Best for scenes with few polygons or resolution-independent output

• Implementation
– Difficult to implement!

– Must carefully control numerical error

6

Image Space Algorithms

• Operate on pixels
– For each pixel in the scene, find the object closest to the COP

which intersects the projector through that pixel, then draw.

– Perform tests at device resolution, result works only for that
resolution

• Complexity
– Naïve approach checks all n objects at every pixel.Then, O().

– Better approaches check only the objects that could be visible at
each pixel. Let’s say, on average, d objects are visible at each
pixel (a.k.a., depth complexity). Then, O().

• Implementation
– Usually very simple!

– Used a lot in practice.

n m2

d m2

7

Object Order vs. Image Order

• Object order
– Consider each object only once - draw its pixels and move on to

the next object

– Might draw the same pixel multiple times

• Image order
– Consider each pixel only once - draw part of an object and move

on to the next pixel

– Might compute relationships between objects multiple times

8

Sort First vs. Sort Last

• Sort first
– Find some depth-based ordering of the objects relative to the

camera, then draw from back to front

– Build an ordered data structure to avoid duplicating work

• Sort last
– Sort implicitly as more information becomes available

9

Important Algorithms

• Ray casting

• Z-buffer

• Binary space partitioning

• Back face culling

10

Ray Casting

1. Partition the projection plane into pixels to match screen
resolution:

2. For each pixel pi, construct ray from COP through PP at
that pixel and into scene

3. Intersect the ray with every object in the scene

4. Color the pixel according to the object with the closest
intersection

ip

c

iO
jO

11

Ray Casting, cont.

• Parameterize each ray:

r(t) = c + t (Pij - c)

• Each object Oi returns ti >1 such that
first intersection with Oi occurs at r(ti).

Q: Given the set {ti} what is the first intersection point?

ip

c

iO
jO

12

Aside: Definitions

• An algorithm exhibits coherence if it uses knowledge
about the continuity of the objects on which it operates

• An online algorithm is one that doesn’t need all the data to
be present when it starts running
– Example: insertion sort

13

Ray Casting Analysis
• Easy to implement?
• Hardware implementation?
• Pre-processing required?
• Incremental drawing calculations (uses coherence)?
• On-line (doesn’t need all objects before drawing begins)?
• Memory intensive?
• Handles transparency and refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?

14

Z-buffer
• Idea: along with a pixel’s red, green and blue values, maintain some

notion of its depth
– An additional channel in memory, like alpha
– Called the depth buffer or Z-buffer

• When the time comes to draw a pixel, compare its depth with the depth
of what’s already in the framebuffer. Replace only if it’s closer

• Very widely used
• History

– Originally described as “brute-force image space algorithm”
– Written off as impractical algorithm for huge memories
– Today, done easily in hardware

void draw_mode_setup(void) {
…
GlEnable(GL_DEPTH_TEST);
…

}

15

Z-buffer Implementation

for each pixel pi
{

Z-buffer[pi] = FAR
Fb[pi] = BACKGROUND_COLOR

}

for each polygon P
{

for each pixel pi in the projection of P
{

Compute depth z and shade s of P at pi
if z < Z-buffer[pi]
{

Z-buffer[pi] = z
Fb[pi] = s

}
}

}

16

Visibility tricks for Z-buffers

Z-buffering is the algorithm of choice for hardware rendering

What is the complexity of the Z-buffer algorithm?

What can we do to decrease the constants?

17

Z-buffer Tricks

• The shade of a triangle can be computed incrementally
from the shades of its vertices

• Can do the same with depth

(R1,G1,B1,z1)

(R2,G2,B2,z2)

(R3,G3,B3,z3)

18

Z value interpolation

Scan line

1y

2y

3y

sy

2z

3z

1z

pz
bzaz

1
1 1 2

1 2

1
1 1 3

1 3

()

()

()

s
a

s
b

b p
p b b a

b a

y y
z z z z

y y

y y
z z z z

y y

x x
z z z z

x x

−= − −
−
−= − −
−
−

= − −
−

19

Depth Preserving
Conversion to Parallel Projection

normM

20

• Use 3x4 projective transformation

• And keep around z (e.g. z´=z)

• To make sure that z bits are unifromly distributed between
far and near clipping planes

Computing Z

1 0 0 0
'

0 1 0 0
'

2
0 0'

() ()
'

0 0 1/ 0

x x

y y
f n fn

z z
d f n d f n

w w
d

 = = + − − −

' 1 0 0 0

' 0 1 0 0

' 0 0 1/ 0

x
x

y
y

z
w d

w

 =
 −

21

Z-buffer Analysis
• Easy to implement?
• Hardware implementation?
• Pre-processing required?
• Incremental drawing calculations (uses coherence)?
• On-line (doesn’t need all objects before drawing begins)?
• Memory intensive?
• Handles transparency and refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?

22

Binary Space Partitioning

• Goal: build a structure that captures some relative depth
information between objects. Use it to draw objects in the
right order from any viewpoint.
– Called the binary space partitioning tree, or BSP tree

• Key observation: The polygons in the scene are painted in
the correct order if for each polygon P,
– Polygons on the far side of P are painted first

– P is painted next

– Polygons in front of P are painted last A

B

C

D

23

Building a BSP Tree (in 2D)

24

Alternate BSP Tree

1

2
34

5 1

2

3

4

5

back

back

back

front

25

BSP Tree Construction

BSPtree makeBSP(L: list of polygons)
{

if L is empty
{

return the empty tree
}

Choose a polygon P from L to serve as root
Split all polygons in L according to P
return new TreeNode(

P,
makeBSP(polygons on negative side of P),
makeBSP(polygons on positive side of P))

}

• Splitting polygons is expensive! It helps to choose P
wisely at each step.
– Example: choose five candidates, keep the one that splits the

fewest polygons

26

BSP Tree Display

showBSP(v: Viewer, T: BSPtree)
{

if T is empty then return

P := root of T
if viewer is in front of P
{

showBSP(back subtree of T)
draw P
showBSP(front subtree of T)

} else {
showBSP(front subtree of T)
draw P
showBSP(back subtree of T)

}
}

27

BSP Tree Applications

• Hidden surface removal

• Ray casting speedup

• Collision detection

• Robot motion planning

28

BSP Analysis
• Easy to implement?
• Hardware implementation?
• Pre-processing required?
• Incremental drawing calculations (uses coherence)?
• On-line (doesn’t need all objects before drawing begins)?
• Memory intensive?
• Handles transparency and refraction?
• Polygon-based?
• Extra work for moving objects?
• Extra work for moving viewer?
• Efficient shading?
• Handles cycles and self-intersections?

29

Back Face Culling

• Can be used in conjunction with polygon-based algorithms

• Often, we don’t want to draw polygons that face away
from the viewer. So test for this and eliminate (cull) back-
facing polygons before drawing

• How can we test for this?

30

Summary

• Classification of hidden surface algorithms

• Understanding of Z-buffer

• Familiarity with BSP trees and back face culling

