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9. Distribution Ray Tracing
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Reading

Required:

! Watt, sections 10.6 ,14.8.

Further reading:

! A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. [In the lab.]
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Pixel anti-aliasing
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Simulating gloss and translucency

The resulting rendering can still have a form of 
aliasing, because we are undersampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:
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Reflection anti-aliasing
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Full anti-aliasing
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Summing over ray paths

We can think of this problem in terms of 
enumerated rays:

The intensity at a pixel is the sum over the primary 
rays:

For a given primary ray, its intensity depends on 
secondary rays:

Substituting back in:
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Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to 
approximate a complex, nested light transport 
integral  with a summation over ray paths (of 
arbitrary length!).  

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.
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Whitted integration

An anti-aliased Whitted ray tracer chooses very specific 
paths, i.e., paths starting on a regular sub-pixel grid 
with only perfect reflections (and refractions) that 
terminate at the light source.

One problem with this approach is that it doesn’t 
account for non-mirror reflection at surfaces.
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Monte Carlo path tracing

Instead, we could choose paths starting from random 
sub-pixel locations with completely random decisions 
about reflection (and refraction).  This approach is 
called Monte Carlo path tracing.

The advantage of this approach is that the answer is 
known to be unbiased and will converge to the right 
answer.
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Importance sampling

The disadvantage of the completely random 
generation of rays is the fact that it samples 
unimportant paths and neglects important ones.

This means that you need a lot of rays to converge to a 
good answer.

The solution is to re-inject Whitted-like ideas: spawn 
rays to the light, and spawn rays that favor the 
specular direction.
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Stratified sampling

Another method that gives faster convergence is 
stratified sampling.  

Notice, for example, that rays cast through a pixel can 
clump together.  Here’s an improved sampling 
pattern:

We call this a jittered sampling pattern.

One interesting side effect is that this randomness 
actually injects noise in the solution (slightly grainier 
images).  This noise is actually more visually 
appealing than aliasing artifacts.
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Distribution ray tracing

These ideas can be combined to give a particular 
method called distribution ray tracing:

! uses non-uniform (jittered) samples.

! replaces aliasing artifacts with noise.

! provides additional effects by distributing rays 
to sample:

• Reflections and refractions

• Light source area

• Camera lens area 

• Time

[Originally called “distributed ray tracing,” but we will 
call it distribution ray tracing so as not to confuse 
with parallel computing.] 
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DRT pseudocode

TraceImage() looks basically the same, except now 
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) " I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 4*4.
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DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only) 
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material)  ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(N, -d, id)

I ← I + material.kr ∗ traceRay(scene, q, R, id)

return I

end function
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Pre-sampling glossy reflections
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Distributing rays over light source area gives:
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Pinhole cameras in the real world require small apertures 
to keep the image in focus.  

Lenses focus a bundle of rays to one point => can have 
larger aperture.

For a “thin” lens, we can approximately calculate where an 
object point will be in focus using the the Gaussian lens 
formula:

where f is the focal length of the lens.
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Depth of field

Lenses do have some limitations.

The most noticeable is the fact that points that are not in 
the object plane will appear out of focus.  

The depth of field is a measure of how far from the object 
plane points can be before appearing “too blurry.”

image object
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Simulating depth of field

Distributing rays over a finite aperture gives:

Image plane Plane in focus

Aperture

Lens
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In general, you can trace rays through a scene and 
keep track of their id’s to handle all of these effects:

Chaining the ray id’s
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DRT to simulate _________________

Distributing rays over time gives:


