
1

9. Distribution Ray Tracing

2

Reading

Required:

! Watt, sections 10.6 ,14.8.

Further reading:

! A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

3

Pixel anti-aliasing

I x xd
pixel

()

No anti-aliasing

Pixel anti-aliasing

4

Simulating gloss and translucency

The resulting rendering can still have a form of
aliasing, because we are undersampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

R

T

5

Reflection anti-aliasing

Reflection anti-aliasing

wout

win

I fin in out inr d
H

() (,)w w w wò

6

Full anti-aliasing

I fin in out inr d
H

() (,)w w w wò

I x xd
pixel

()ò

Full anti-aliasing

7

Summing over ray paths

We can think of this problem in terms of
enumerated rays:

The intensity at a pixel is the sum over the primary
rays:

For a given primary ray, its intensity depends on
secondary rays:

Substituting back in:

r1

r2

r11
r12r13

r131

r132

=! ()pixel i
i

I I r

= →!() () ()i ij r ij i
j

I r I r f r r

= →!! () ()pixel ij r ij i
i j

I I r f r r

8

Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to
approximate a complex, nested light transport
integral with a summation over ray paths (of
arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.

r1

r2

r11
r12r13

r131

r132

= → →!!! () () ()pixel ijk r ijk ij r ij i
i j k

I I r f r r f r r

→ →ijk ij ir r r

9

Whitted integration

An anti-aliased Whitted ray tracer chooses very specific
paths, i.e., paths starting on a regular sub-pixel grid
with only perfect reflections (and refractions) that
terminate at the light source.

One problem with this approach is that it doesn’t
account for non-mirror reflection at surfaces.

r1

r4

r41

r421

r422

r42

10

Monte Carlo path tracing

Instead, we could choose paths starting from random
sub-pixel locations with completely random decisions
about reflection (and refraction). This approach is
called Monte Carlo path tracing.

The advantage of this approach is that the answer is
known to be unbiased and will converge to the right
answer.

11

Importance sampling

The disadvantage of the completely random
generation of rays is the fact that it samples
unimportant paths and neglects important ones.

This means that you need a lot of rays to converge to a
good answer.

The solution is to re-inject Whitted-like ideas: spawn
rays to the light, and spawn rays that favor the
specular direction.

r1

r4

r41

r421

r422

r42

12

Stratified sampling

Another method that gives faster convergence is
stratified sampling.

Notice, for example, that rays cast through a pixel can
clump together. Here’s an improved sampling
pattern:

We call this a jittered sampling pattern.

One interesting side effect is that this randomness
actually injects noise in the solution (slightly grainier
images). This noise is actually more visually
appealing than aliasing artifacts.

13

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing:

! uses non-uniform (jittered) samples.

! replaces aliasing artifacts with noise.

! provides additional effects by distributing rays
to sample:

• Reflections and refractions

• Light source area

• Camera lens area

• Time

[Originally called “distributed ray tracing,” but we will
call it distribution ray tracing so as not to confuse
with parallel computing.]

14

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) " I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 4*4.

15

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material) ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(N, -d, id)

I ← I + material.kr ∗ traceRay(scene, q, R, id)

return I

end function

16

Pre-sampling glossy reflections

17

Distributing rays over light source area gives:

Surface

Occluder

Light

Umbra

Penumbra

Soft shadows

18

Pinhole cameras in the real world require small apertures
to keep the image in focus.

Lenses focus a bundle of rays to one point => can have
larger aperture.

For a “thin” lens, we can approximately calculate where an
object point will be in focus using the the Gaussian lens
formula:

where f is the focal length of the lens.

Lenses

fdd io

111 =+

odid

f

19

Depth of field

Lenses do have some limitations.

The most noticeable is the fact that points that are not in
the object plane will appear out of focus.

The depth of field is a measure of how far from the object
plane points can be before appearing “too blurry.”

image object

20

Simulating depth of field

Distributing rays over a finite aperture gives:

Image plane Plane in focus

Aperture

Lens

21

In general, you can trace rays through a scene and
keep track of their id’s to handle all of these effects:

Chaining the ray id’s

22

DRT to simulate _________________

Distributing rays over time gives:

