
1

9. Hidden Surface Algorithms

2

Reading

Reading:

Watt, 6.6 (esp. intro and subsections 1, 4, and 8–
10), 12.1.4.

Optional reading:

Foley, van Dam, Feiner, Hughes, Chapter 15

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface
algorithms, ACM Computing Surveys 6(1): 1-55,
March 1974.

3

Introduction

In the previous lecture, we figured out how to
transform the geometry so that the relative sizes will
be correct if we drop the z component.

But, how do we decide which geometry actually gets
drawn to a pixel?

Known as the hidden surface elimination problem
or the visible surface determination problem.

There are dozens of hidden surface algorithms.

They can be characterized in at lease three ways:

Object-precision vs. image-precision (a.k.a., object-
space vs. image-space)

Object order vs. image order

Sort first vs. sort last

4

Object-precision algorithms

Basic idea:

Operate on the geometric primitives themselves.
(We’ll use “object” and “primitive” interchangeably.)

Objects typically intersected against each other

Tests performed to high precision

Finished list of visible objects can be drawn at any
resolution

Complexity:

For n objects, can take O(n2) time to compute
visibility.

For an mxm display, have to fill in colors for m2 pixels.

Overall complexity can be O(kobj n2 + kdisp m2).

Implementation:

Difficult to implement

Can get numerical problems

5

Image-precision algorithm

Basic idea:

Find the closest point as seen through each pixel

Calculations performed at display resolution

Does not require high precision

Complexity:

Naïve approach checks all n objects at every pixel.
Then, O(n m2).

Better approaches check only the objects that
could be visible at each pixel. Let’s say, on
average, d objects are visible at each pixel (a.k.a.,
depth complexity). Then, O(d m2).

Implementation:

Very simple to implement.

• Used a lot in practice.

6

Object order vs. image order

Object order:

Consider each object only once, draw its pixels,
and move on to the next object.

Might draw the same pixel multiple times.

Image order:

Consider each pixel only once, find nearest object,
and move on to the next pixel.

Might compute relationships between objects
multiple times.

7

Sort first vs. sort last

Sort first:

Find some depth-based ordering of the objects
relative to the camera, then draw back to front.

Build an ordered data structure to avoid
duplicating work.

Sort last:

Sort implicitly as more information becomes
available.

8

Outline of Lecture

Z-buffer

Ray casting

Binary space partitioning (BSP) trees

9

Z-buffer

The Z-buffer' or depth buffer algorithm [Catmull, 1974] is
probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

for each pixel (i,j) do

Z-buffer [i,j] ← FAR

Framebuffer[i,j] ← <background color>

end for

for each polygon A do

for each pixel in A do

Compute depth z and shade s of A at (i,j)

if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z

Framebuffer[i,j] ← s

end if

end for

end for

Q: What should FAR be set to?

10

i

j

Z-buffer, cont'd

The process of filling in the pixels inside of a polygon
is called rasterization.

During rasterization, the z value and shade s can be
computed incrementally (fast!).

Curious fact:

Described as the “brute-force image space
algorithm” by [SSS]

Mentioned only in Appendix B of [SSS] as a point
of comparison for huge memories, but written off
as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

11

Z-buffer: Analysis

Classification?

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take extra work than normal to
draw the frame?

If the viewer moves, does it take extra work than normal
to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

12

Ray casting

Idea: For each pixel center Pij

Send ray from eye point (COP), c, through Pij into
scene.

Intersect ray with each object.

Select nearest intersection.

ij

26

13

Ray casting, cont.

Implementation:

Might parameterize each ray:

r(t) = c + t (Pij - c)

Each object Ok returns tk >1 such that first
intersection with Ok occurs at r(tk).

Q: Given the set {tk} what is the first intersection point?

Note: these calculations generally happen in world
coordinates.

ij

26

14

Ray casting: Analysis

Classification?

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take extra work than normal to
draw the frame?

If the viewer moves, does it take extra work than normal
to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

15

Binary-space partitioning (BSP) trees

Idea:

Do extra preprocessing to allow quick display
from any viewpoint.

Key observation: A polygon A is painted in correct
order if

Polygons on far side of A are painted first

P is painted next

Polygons in front of A are painted last.

A

B

C

D

16

BSP tree creation

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

17

BSP tree creation (cont’d)

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon A from L to serve as root

Split all polygons in L according to A

node ← A

node.neg ← MakeBSPTree(Polygon on neg. side of A)

node.pos ← MakeBSPTree(Polygon on pos. side of A)

return node

end procedure

Note: Performance is improved when fewer polygons are
split --- in practice, best of ~ 5 random splitting polygons
are chosen.

Note: BSP is created in world coordinates.

18

BSP tree display

procedure DisplayBSPTree:

Takes BSPTree T

if T is empty then return

if viewer is in front (on pos. side) of T.node

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree|(T._____)

else

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree(T. _____)

end if

end procedure

19

BSP trees: Analysis

Classification?

Easy to implement?

Easy to implement in hardware?

Incremental drawing calculations (uses coherence)?

Pre-processing required?

On-line (doesn’t need all objects before drawing
begins)?

If objects move, does it take extra work than normal to
draw the frame?

If the viewer moves, does it take extra work than normal
to draw the frame?

Typically polygon-based?

Efficient shading (doesn’t compute colors of hidden
surfaces)?

Handles transparency?

Handles refraction?

20

Visibility tricks for Z-buffers

Z-buffering is the algorithm of choice for hardware
rendering, so let’s think about how to make it run as
fast as possible…

What is the cost of the Z-buffer algorithm?

What can we do to decrease the constants?

21

Summary

What to take home from this lecture:

Classification of hidden surface algorithms

Understanding of Z-buffer, ray casting, and BSP
tree hidden surface algorithms

Familiarity with some Z-buffer acceleration
strategies

