Big Data Systems

Big Data Parallelism

® Huge data set

® crawled documents, web request logs, etc.

Challenges

® Parallelize application
® Where to place input and output data?

® \Where to place computation?

® How to communicate data? How to manage threads? How to
avoid network bottlenecks?

Goal of MapReduce

® To solve these distribution/fault-tolerance issues once
in a reusable library

® To shield the programmer from having to re-solve them for
each program

Map Reduce

® Overview:

® Partition large data set into M splits

® Run map on each partition, which produces R local

Details

® Input values: set of key-value pairs

® Job will read chunks of key-value pairs

® “key-value” pairs a good enough abstraction

® Map(key, value):

® System will execute this function on each key-value pair

Count words in web-pages

Map(key, value) {
// key is url
// value is the content of the url
For each word W in the content
Generate(W, 1);

}

Reverse web-link graph

Go to google advanced search:
"find pages that link to the page:" cnn.com

Map(key, value) {

// key = url
// value = content
For each url, linking to target

® Question: how do we implement “join” in
MapReduce?

® Imagine you have a log table L and some other table R that

Comparisons

® \Worth comparing it to other programming models:
® distributed shared memory systems

® bulk synchronous parallel programs

® key-value storage accessed by general programs

Implementation

® Depends on the underlying hardware: shared
memory, message passing, NUMA shared memory,
etc.

® Inside Google:

MapReduce Input

® Where does input come from?

® Input is striped+replicated over GFS in 64 MB chunks
® But in fact Map always reads from a local disk

® They run the Maps on the GFS server that holds the data

o

Intermediate Data

® Where does MapReduce store intermediate data?

® On the local disk of the Map server (not in GFS)

® Tradeoff:

Output Storage

® Where does MapReduce store output?

® In GFS, replicated, separate file per Reduce task

Question

Scaling

® Map calls probably scale

® but input might not be infinitely partitionable, and small
input/intermediate files incur high overheads

® Reduce calls probably scale

Fault Tolerance

® The main idea: Map and Reduce are deterministic,
functional, and independent

® so MapReduce can deal with failures by re-executing

® What if a worker fails while running Map?

Fault Tolerance

® |f a Map finishes, then that worker fails, do we need to re-
run that Map?

® Intermediate output now inaccessible on worker's local disk.

® Thus need to re-run Map elsewhere unless all Reduce workers
have already fetched that Map's output.

o

Role of the Master

® Keeps state regarding the state of each worker
machine (pings each machine)

Load Balance

® What if some Map machines are faster than others?
® Or some input splits take longer to process?
® Solution: many more input splits than machines
® Master hands out more Map tasks as machines finish

® Thus faster machines do bigger shar_e_qf work

Stragglers

® Often one machine is slow at finishing very last task

® bad hardware, overloaded with some other work

How many MR tasks?

® Paper uses M = 10x number of workers, R = 2x.
® More =>

® finer grained load balance.

® |ess redundant work for straggler reduction.

Discussion

® what are the constraints imposed on map and reduce
functions?

Map Reduce Criticism

® “Giant step backwards” in programming model

® Sub-optimal implementation

Comparison to Databases

® Huge source of controversy; claims:

® parallel databases have much more advanced data processing
support that leads to much more efficiency

® support an index; selection is accelerated

Where does MR win?

® Scaling

® Loading data into system

Spark Motivation

® MR Problems

® cannot support complex applications efficiently

® cannot support interactive applications efficiently

® Root cause

® |nefficient data sharing

In MapReduce, the only way to share data across

jobs is stable storage -> slow!

Motivation

HDFS HDFS HDFS HDFS
read write read Wwrite

—_—

bJ_> S—

result1
—

result 2

result 3

, / |
-J\‘

Input

Slow due to replication and disk /O,
but necessary for fault tolerance

Goal: In-Memory Data Sharing

one-time
processing

Challenge

Other options

® Existing storage abstractions have interfaces based on
fine-grained updates to mutable state

® E.g., RAMCloud, databases, distributed mem, Piccolo

RDD Abstraction

® Restricted form of distributed shared memory

® immutable, partitioned collection of records

® can only be built through coarse-grained deterministic transformations
(map, filter, join...)

® Efficient fault-tolerance using lineage

Fault-tolerance

one-time
Processing _ @

Design Space

Network Memory
bandwidth bandwidth

K-V stores, Best for
databases, €.» — transactional
RAMCloud workloads

Granularity
of Updates

Coarse

Write Throughput

Operations

® Transformations (e.g. map, filter, groupBy, join)

® Lazy operations to build RDDs from other RDDs

Example: Mining Console Logs

Load error messages from a log into memory, then interactively search

lines = spark.textFile(“hdfs://...
errors = lines.filter(lambda s: s.startswith(“ERROR™))

messages = errors.map(lambda s: s.split(“\t’)[2])

messages.filter(lambda s: “foo” in s).count()
messages.filter(lambda s: “bar” in s).count()

messages.persist()

Result: full-text search of Wikipedia in <1
(vs 20 sec for on-disk data) Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

RDD Fault Tolerance

RDDs track the transformations used to build
them (their lineage) to recompute lost data

E.g:

messages = textFile(...).filter(lambda s: s.contains(“ERROR™))
.map(lambda s: s.split(“\t’)[2])

HadoopRDD FilteredRDD MappedRDD

Lineage

® Spark uses the lineage to schedule jobs

® Transformation on the same partition form a stage

® Joins, for example, are a stage boundary

Lineage & Fault Tolerance

® Great opportunity for efficient fault tolerance

® Let's say one machine fails
® \Want to recompute only its state

® The lineage tells us what to recompute

® Follow the lineage to identify all partitions needed

Fault Recovery

Failure happens 1

58 58\

Iteration

w
S
Q
=
l;
-
9
=
3
3
=

Example: PageRank

1. Start each page with arank of 2
2. On eachiteration, update each page’s rank to

ziEneighbors ranki / |neighb0rsi|

Tinks // RDD of (url, neighbors) pairs
ranks // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Optimizing Placement

Links Ranks,

(url, neighbors) (url, rank)

l join

Contribs,
l reduce

Contribs,

l reduce
Ranks,

ol

® links & ranks repeatedly
joined

® Can co-partition them (e.g.,
hash both on URL)

® Can also use app knowledge,
e.g., hash on DNS name

PageRank Performance

“ Hadoop
“ Basic Spark

Spark + Controlled
Partitioning

(%)
o

)
0
S
c
2
-
©
-
V)
=
-
v
Q.
v
E
—

TensorFlow: System for ML

® Open Source, lots of developers, external contributors

Three types of ML

® Large scale training: huge datasets, generate models

® Google’s previous DistBelief for 100s of machines

® Low latency inference: running models in datacenters,

TensorFlow

® Common way to write programs

® Dataflow + Tensors

Background: NN Training

Take input image

Compute loss function (forward pass)

Compute error gradients (backward pass)
Update weights
Repeat

Computation is a DFG

\ Graph of Nodes, also called Operations or ops.
e,
\} ~

MatMul)—" C Xent)

oo }—
(o

Example Code

Example Code

1. Construct a graph representing the mocel.
¥ = tf.placeheclder(tf.float3z, [BAICE_SIZE, 7847)
y = tf.placeheclder(tf.float3z, [BAICE_SIZE, 10])

e

Placeholdsr fcr _npuat.
Placeholdsr fcr _abels.

e

W_1 = tz.Variable(ti.random uvnizorm([/&4, 100))) ¥ /84x100 ws_ght matrix.
b 1 =tz.Variable(ttft.zerxcs(_ 10C)] ¥ _U0-elerent bias wvector.
layer 1 = tf.nn.relu(tf.matmul(x, W_1, + b_2) ¥ Output of hidoen layer.
W 2 = tZ.Vocriable(tf.random uniform([1C0, 101} ¥ 100x%10 weight matrix.

b 2 = tZ.Veriable(tf.zexos(7101}) ¢ 10 element tias wvector.
layer 2 = tf.metmul (layer 1, W 2) | b 2 ¢ Output of lin=ar laver.

2. Add nodes that represent the cptimizaticn algcrithn.
loss = tf.nn.softmex cross entropy with logits(_aver 2, v)
train_op - tf.trein.2AdagradOptimizer(0.01l) .mininize(loss)

3. ExeculLe Lhe graph on balches vl _npul dalz.

wilh L. Session() #8 sess: ¥ Conrecl. L Lh= TF run._.ine.
sess.run(l.foinibialive_al’ _variables()) #F Rantion"y inilial ze weighls.
for step in range (NUM_STEPS) : ¥ Train “terativelv for NUM_STEPS.
¥_data, y_data = ... §# L-ac cone rzatch of input data.
sess.runitrain_op, (x!: x_datzs, vy: y_dcata}; ¥ P=zrform one training stzp.

Parameter Server Architecture

Data Parallelism:

, Asynchronous Distributed Stochastic Gradient Descent
Inpul layer Hidden layae Qutpul layer

Parameter Server 2 =p +4p
(S 4 v p—— "
_,DDL_JU)

oo\(og

A0,)a4

W] [

Model
Woarkers [

Data ’:- :]
Shards | -

Stateless workers, stateful parameter servers (DHT)
Commutative updates to parameter server

TensorFlow

® Flexible architecture for mapping operators and
parameter servers to different devices

® Supports multiple concurrent executions on

TensorFlow handles the glue

\\

GPU 0
:Z AdD—’ ﬂm

a\

Synchrony?

(a) Asynchronous replication (b) Synchronous replication (c) Synchronous wi/ backup worker

PS l I Q
—

)

Worker 3

® Asynchronous execution is sometimes helpful,
addresses stragglers

® Asynchrony causes consistency problems

® TensorFlow: pursues synchronous training
® But adds k backup machines to reduce the straggler problem

® Uses domain specific knowledge to enable this optimization

Open Research Problems

® Automatic placement: data flow - great mechanism,
but not clear how to use it appropriately

® mutable state - split round-robin across parameter server
nodes, stateless tasks replicated on GPUs as much as it fits,

