Distributed State:
Transactions and
Consistency

Preliminaries

® Distribution typically addresses two needs:

® Split the work across multiple nodes

Failures

® \What are the different classes/types of failures in a
distributed system?

Transactions

® Mechanism for coping with crashes and concurrency

® Example: new account creation
begin_transaction()
if "alice" not in password table:
add alice to password table
add alice to profile table
commit_transaction()

Distributed Commit

® A bunch of computers are cooperating on some task

® Each computer has a different role

Example

® calendar system, each user has a calendar
® one server holds calendars of users A-M, another server holds N-Z

® sched(ul, u2, t):
begin_transaction()

okl = reserve(ul, t)

ok2 =reserve(u2, t)

i if okl and ok2:

ldea #1

® tentative changes, later commit or undo (abort)

reserve_handler(u, t):
if u[t] is free:
temp_u[t] =taken // ATEMPORARY VERSION

|dea #2

® single entity decides whether to commit to ensure
agreement

® let's call it the Transaction Coordinator (TC)

® client sends RPCsto A

\Yi[eYol=]

® For each distributed transaction T:

® one coordinator
® a3 set of participants

® Coordinator knows participants; participants don’t

&
= - - —~ — -
. - & ol

The setup

® Each process has an input value, vote: Yes, No

® Each process has to compute an output value

-
'..‘ Y " vy oV . ;

Atomic Commit Specification

AC-1: All processes that reach a decision reach the same one.
AC-2: A process cannot reverse its decision after it has reached one.

AC-3: The Commit decision can only be reached if all processes vote
Yes.

AC-4: If there are no failures and all processes vote Yes, then the
decision will be Commit.

sl sl Sa— - e A gl

2-Phase Commit

I. sends VOTE-REQ fto all participants

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ II. sends vote; to Coordinator

if vote;= NO then
decide; = ABORT

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ I1. sends vote; to Coordinator
/ if vote;= NO then
IIL. if (all votes YES) then decide; := ABORT

decide. := COMMIT ‘ m— Sk ~ halt

2-Phase Commit

I. sends VOTE-REQ fto all participants

\ I1. sends vote; to Coordinator
/ if vote;= NO then
IIL. if (all votes YES) then decide; := ABORT

'decidec := COMMIT halt

l‘l -

Timeout actions

Processes are waiting on steps 2, 3, and 4

Step 2 piis waiting for VOTE- Step 3 Coordinator is waiting
REQ from coordinator for vote from participants

Termination protocols

. Wait for coordinator to recover

® [t always works, since the coordinator is never uncertain

Logging actions

1. When coord sends VOTE-REQ, it writes START-2PC to its DT Log

2. When p; is ready to vote YES,
® writes YES to DT Log
® sends YES to coord (writes also list of participants)

3. When p; is ready to vote NO, it writes ABORT to DT Log
4. When c is ready to decide COMMIT, it writes COMMIT to DT

P recovers

1. When coordinator sends VOTE-REQ, o if DT Log contains START-2PC,
it writes START-2PC to its DT Log then p = c:

2. When participant is ready fo vote o if DT Log contains a decision
e i eces oDl ogsectore value, then decide accordingly
sending yes to coordinator (writes)

o else decide ABORT

also list of participants)
When participant is ready to vote No,
it writes ABORT to DT Log

@ otherwise, p is a participant:
0 if DT Log contains a decision

® How to deal with concurrency?

Correctness: Serializability

® results should be as if transactions ran one at a time
in some order

® Why is serializability good for programmers?

® it allows application code to ignore concurrency

Two Phase Locking

® each database record has a lock
® the lock is stored at the server that stores the record

® transaction must wait for and acquire a record's lock
before using it

® thus update() handler implicitly acquires lock when it uses a

Locking with 2-PC

® Server must acquire locks as it executes client ops
® client->server RPCs have two effects: acquire lock, use data
® |f server says "yes" to TC's prepare:

® Must remember locks and values across crash+restart!

® So must write locks+values to disk log, before replying “yes”

Key Insight for 3-PC

® Cannot abort unless we know that no one has
committed

® We need an algorithm that lets us infer the state of
failed nodes

3-Phase Commit

® Two approaches:

Blocking and uncertainty

Why does uncertainty lead to blocking?

® An uncertain process does not know whether it can safely
decide COMMIT or ABORT because some of the processes it
cannot reach could have decided either

on-blocking Propert

2PC Revisited

Vote-REQ Vote-REQ

YES \[@)

ABORT Q

2PC Revisited

Coordinator Failure

® Elect new coordinator and have it collect the state of
the system

3PC: The Protocol

Dale Skeen (1982)

l. ¢ sends VOTE-REQ to all participants.

Il. When p; receives a VOTE-REQ, it responds by sending a vote to ¢
if vote; = No, then decide; := ABORT and p; halts.

lll. ¢ collects votes from all.
if all vo’res are Yes, then ¢ sends PRECOMMIT to all

Termination protocol:
Process states

At any time while running 3 PC, each participant can be in
exactly one of these 4 states:

Aborted Not voted, voted NO, received ABORT

Not all states
are compatible

Aborted

Uncertain

Committable

Committed

Y

N

N

Aborted

Y

Failures

® Things to worry about:

Timeout Actions

Processes are waiting on steps 2, 3,4, 5,and 6

Step 2 piis waiting for VOTE-REQ | Step 3 Coordinator is waiting for
from coordinator vote from participants

Step 4 pi waits for PRECOMMIT | Step 5 Coordinator waits for ACKs |

Timeout Actions

Processes are waiting on steps 2, 3,4, 5,and 6

Step 2 p;is waiting for VOTE-REQ
from coordinator

Exactly as in 2PC

Step 4 p; waits for PRECOMMIT

Step 3 Coordinator is waiting for
vote from participants

Exactly as in 2PC

Step 5 Coordinator waits for ACKs

Termination protocol

TR1. if some process decided ABORT, then?

@ When Pi times out, it
starts an election protocol TR2. if some process decided COMMIT,

to elect a new then?

coordinafor TR3. if all processes that reported state

are uncertain, then?

@ The new coordinator
sends STATE-REQ to all

TR4. if some process is committable, but

& & mfin

Termination protocol

TRI. if some process decided ABORT, then
o When Pi times out, it decide ABORT

starts an election protocol sl RPORT o @l

halt
e ele,c* A TR2. if some process decided COMMIT, then
coordinator decide COMMIT
. send COMMIT fto all
® The new coordinator halt
sends STATE-REQ fo all TR3. if all processes that reported state

processes that _ are uncertain, then

Discussion

Shared Virtual Memory

Context

® Parallel architectures & programming models
® Bus-based shared memory multiprocessors
® h/w support for coherent shared memory

® can run both shared memory & message passing

‘ ’

Distributed Shared
Memory

® Radical idea: let us not have the hardware dictate
what programming model we can use

® Provide a shared address space abstraction even on
clusters

How do we provide this abstraction?

® Operating system support:

® e.g., lvy, Treadmarks, Munin

® Compiler support (Shasta)

® minimize overhead through compiler analysis

IVY Shared Virtual Memory

® Seminal system that sparked the entire field of DSM
(distributed shared memory)

® Motivations:
® sharing things on a network

- ® “embassy” system to support a network file system between

Traditional Virtual Memory

Virtual
Memory

- Page Table entry:

- |f “valid”, translation exists

- If “not valid”, traps into the kernel, gets the page, re-executes
trapped instruction

- Check is made for every access; TLB serves as a cache for the
page table entries

Shared Virtual Memory

e Pool of “shared pages”: if not
local, page is not mapped

e Page table entry access bits

Virt. page # physical page #|_valid | access

e H/w detects read access to
invalid page -
e read faults : [¥E Shared
e H/w detects writes to mapped [Virtual
memory with no write access

e write faults

e (OS maintains consistency at VM
page level

e copying data
e setting access bits

BYES

® Programming model (as in coherence, consistency,
etc.)

Programming Model

® Contract between programmer and h/w

® Shared memory abstraction typically means two
related concepts:

® Coherence

Coherence vs. Consistency

® Coherence: writes are propagated to other nodes; the
writes to a particular memory location are seen in
order

Sequential Consistency

@ “The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)

P W(x)a

Sequential Consistency

@ “The result of any execution is the same as if the
operations of all the processes were executed in some
sequential order and the operations of each individual
process appear in this sequence in the order specified
by its program” (Lamport, 1979)

P W(x)a

Other Consistency Models

® Can we have consistency models stronger than
sequential consistency?

Weakening Sequential

Consistency: Causal Consistency

@ Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines. (Hutto and Ahamad, 1990)

p1: W(x)a >W (x)c

p2: \R(:z:)a—>W(:E)b

More Weakening: FIFO
Consistency

@ "“Writes done by a single process are seen by all other processes in
the order in which they were issued, but writes from different
processes may be seen in a different order by different
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1: W(x)a

p2: \R(az)a—»W(x)b—»W(a:)c

Programming Complexity

Process p; Process p-

\AYADNYYY

® Goal: provide sequentially consistent shared memory

® Baseline Implementation:

Read Faults

® Handler on client:

® asks manager

Pseudocode

Manager:

Lock (Info[p] .1lock) ;
Info[p] .copyset =
Info[p] .copyset U {regNode};
ask Info[p] .owner to send p;
receive confirmation from regNode;
Lock (Ptable[p] .1lock) ; Unlock (Info[p] .1lock) ;
ask manager for p;
receive p;

Read Fault Handler:

send confirmation to manager;
Ptable[p] .access = read;
Unlock (Ptable[p] .1lock) ;

Read Server:

Lock (Ptable[p] .lock) ;
Ptable[p] .access = read;
send copy of p;

Unlock (Ptable[p] .1lock) ;

Write Faults

® Handling includes invalidations:

® make request to manager

® copies are invalidated

Write Pseudocode

Write Fault Handler:

Lock (Ptable[p] .1lock) ;

ask manager for p;

receive p;

send confirmation to manager;

Ptable[p] .access = write;
Unlock (Ptable[p] .1lock) ;

Manager:

Lock (Info[p] .lock) ;

Invalid(p, Info[p].copyset)
Info[p] .copyset = {};

ask Info[p] .owner to send p;
receive confirmation from regNode;
Unlock (Info[p] .1lock) ;

Write Server:

Lock (Ptable[p] .1lock) ;
Ptable[p] .access = nil;
send copy of p;

Unlock (Ptable[p] .lock) ;

Scenarios

® Consider P1 and P2 caching a page with “read” perms

Question

Scenarios

® Consider P1 is owner of page

® P2 performs aread

Improved Manager

® Owner serves as the manager for each page

Read Fault Handler:

Lock (Ptable[p] .lock) ;

ask manager for p;
receive p;

Ptable[p] .access = read;
Unlock (Ptable[p] .lock) ;

Read Server:

Lock (Ptable[p] .1lock) ;
If I am owner {
Ptable[p] .access = read;
Ptable[p] .copyset =
Ptable[p] .copyset U {reqNode};
send copy of p;
} else {
forward request to probable owner;

}
Unlock (Ptable[p] .lock) ;

Performance Questions

® In what situations will IVY perform well?

