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Preliminaries

• Distribu1on	typically	addresses	two	needs:	

• Split	the	work	across	mul1ple	nodes	

• Provide	more	reliability	by	replica1on	

• Focus	of	2PC	and	3PC	is	the	first	reason:	spliEng	the	work	
across	mul1ple	nodes



Failures

• What	are	the	different	classes/types	of	failures	in	a	
distributed	system?	

• What	guarantees	should	we	aim	to	provide	in	building	
fault-tolerant	distributed	systems?



Transac1ons
• Mechanism	for	coping	with	crashes	and	concurrency	

• Example:	new	account	crea1on	
				begin_transac1on()	
				if	"alice"	not	in	password	table:	
								add	alice	to	password	table	
								add	alice	to	profile	table	
				commit_transac1on()	

• transac1ons	must	be:	(ACID	property)	

• atomic:	all	writes	occur,	or	none,	even	if	failures	

• serializable:	result	is	as	if	transac1ons	executed	one	by	one	

• durable:	commiVed	writes	survive	crash	and	restart	

• We	are	interested	in	distributed	transac1ons



Distributed	Commit

• A	bunch	of	computers	are	coopera1ng	on	some	task	

• Each	computer	has	a	different	role	

• Want	to	ensure	atomicity:	all	execute,	or	none	
execute	

• Challenges:	failures,	performance



Example

• calendar	system,	each	user	has	a	calendar	

• one	server	holds	calendars	of	users	A-M,	another	server	holds	N-Z	

• sched(u1,	u2,	t):	
		begin_transac1on()	
		ok1	=	reserve(u1,	t)	
		ok2	=	reserve(u2,	t)	
		if	ok1	and	ok2:	
				if	commit_transac1on():	print	"yes"	
		else	abort_transac1on()	

• We	want	atomicity:	both	reserve,	or	neither	reserves.	

• What	if	1st	reserve()	returns	true,	2nd	reserve()	returns	false	(1me	not	
available,	or	u2	doesn't	exist);	2nd	reserve()	doesn't	return;	client	fails	
before	2nd	reserve()?



Idea	#1

• tenta1ve	changes,	later	commit	or	undo	(abort)	

reserve_handler(u,	t):	
		if	u[t]	is	free:	
				temp_u[t]	=	taken				//	A	TEMPORARY	VERSION	
				return	true	
		else:	
				return	false	

commit_handler():	
		copy	temp_u[t]	to	real	u[t]	
abort_handler():	
		discard	temp_u[t]



Idea	#2

• single	en1ty	decides	whether	to	commit	to	ensure	
agreement	

• let's	call	it	the	Transac1on	Coordinator	(TC)	

• client	sends	RPCs	to	A,	B	

• client's	commit_transac1on()	sends	"go"	to	TC	

• TC/A/B	execute	distributed	commit	protocol...	

• TC	reports	"commit"	or	"abort"	to	client



Model

• For	each	distributed	transac1on	T:	
• one	coordinator	
• a	set	of	par1cipants	

• Coordinator	knows	par1cipants;	par1cipants	don’t	
necessarily	know	each	other	

• Each	process	has	access	to	a	Distributed	Transac1on	
Log	(DT	Log)	on	stable	storage



The	setup

• Each	process	has	an	input	value,	vote:	Yes,	No	

• Each	process	has	to	compute	an	output	value	
decision:	Commit,	Abort



Atomic	Commit	Specifica1on

AC-1:	All	processes	that	reach	a	decision	reach	the	same	one.	

AC-2:	A	process	cannot	reverse	its	decision	aher	it	has	reached	one.	

AC-3:	The	Commit	decision	can	only	be	reached	if	all	processes	vote	
Yes.	

AC-4:	If	there	are	no	failures	and	all	processes	vote	Yes,	then	the	
decision	will	be	Commit.	

AC-5:	If	all	failures	are	repaired	and	there	are	no	more	failures,	then	
all	processes	will	eventually	decide.



2-Phase	Commit

cCoordinator

I. sends VOTE-REQ to all participants

piParticipant



II. sends       to Coordinator

 if       = NO then


  := ABORT

halt

2-Phase	Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant



III. if (all votes YES) then

            := COMMIT


send COMMIT to all

else


         := ABORT

send ABORT to all who voted YES


halt

II. sends       to Coordinator

 if       = NO then


  := ABORT

halt

2-Phase	Commit

votei

decidei

decidec

decidec

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant



III. if (all votes YES) then

            := COMMIT


send COMMIT to all

else


         := ABORT

send ABORT to all who voted YES


halt

II. sends       to Coordinator

 if       = NO then


  := ABORT

halt

2-Phase	Commit

votei

decidei

pi

decidec

decidec

decidei

decidei

cCoordinator Participant

I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then

:= COMMIT


else

:= ABORT       


halt



• How	do	we	deal	with	different	failures?



Timeout	ac1ons

Processes	are	wai1ng	on	steps	2,	3,	and	4

Step 2     is waiting for VOTE-
REQ from coordinator

Step 3  Coordinator is waiting 
for  vote from participants

pi

Step 4    (who voted YES) is waiting 
for COMMIT or ABORT

pi



Termina1on	protocols

I. Wait	for	coordinator	to	recover	

• It	always	works,	since	the	coordinator	is	never	uncertain	

• may	block	recovering	process	unnecessarily	

II. 	Ask	other	par1cipants



1. When	coord	sends	VOTE-REQ,	it	writes	START-2PC	to	its	DT	Log	

2. When					 	 is	ready	to	vote	YES,		
• writes	YES	to	DT	Log		
• sends	YES	to	coord	(writes	also	list	of	par1cipants)		

3. When								is	ready	to	vote	NO,	it	writes	ABORT	to	DT	Log		

4. When					is	ready	to	decide	COMMIT,		it	writes	COMMIT	to	DT	
Log	before	sending	COMMIT	to	par1cipants		

5. When	it	is	ready	to	decide	ABORT,	it	writes	ABORT	to	DT	Log	

6. Aher						receives	decision	value,	it	writes	it	to	DT	Log

Logging	ac1ons

pi

pi

pi

c



			recovers	p

1. When coordinator sends VOTE-REQ,

   it writes START-2PC to its DT Log


2. When participant is ready to vote

   Yes, writes Yes to DT Log before

   sending yes to coordinator (writes

   also list of participants)

   When participant is ready to vote No,

   it writes ABORT to DT Log


3. When coordinator is ready to decide

   COMMIT, it writes COMMIT to DT Log

   before sending COMMIT to participants

   When coordinator is ready to decide

   ABORT, it writes ABORT to DT Log


4. After participant receives decision 

   value, it writes it to DT Log

if DT Log contains START-2PC, 
then       :


if DT Log contains a decision 
value, then decide accordingly

else decide ABORT


otherwise,   is a participant:

if DT Log contains a decision 
value, then decide accordingly

else if it does not contain a 
Yes vote, decide ABORT

else (Yes but no decision) 
run a termination protocol

p = c

p



• How	to	deal	with	concurrency?	

• consider	transac1ons	that	transfer	money	from	one	account	
to	another	

• how	would	you	handle	concurrency	in	the	context	of	2-PC?



Correctness:	Serializability

• results	should	be	as	if	transac1ons	ran	one	at	a	1me	
in	some	order	

• Why	is	serializability	good	for	programmers?	

• it	allows	applica1on	code	to	ignore	concurrency	

• just	write	the	transac1on	to	take	system	from	one	legal	state	
to	another	

• internally,	the	transac1on	can	temporarily	violate	invariants	

• but	serializability	guarantees	other	xac1ons	won't	no1ce



Two	Phase	Locking

• each	database	record	has	a	lock	

• the	lock	is	stored	at	the	server	that	stores	the	record	

• transac1on	must	wait	for	and	acquire	a	record's	lock	
before	using	it	

• thus	update()	handler	implicitly	acquires	lock	when	it	uses	a	
data	record	

• transac1on	holds	its	locks	un1l	a"er	commit	or	abort	

• When	transac1ons	conflict,	locks	delay	&	force	serial	
execu1on	

• When	they	don't	conflict,	locks	allow	fast	parallel	execu1on



Locking	with	2-PC

• Server	must	acquire	locks	as	it	executes	client	ops	

• client->server	RPCs	have	two	effects:	acquire	lock,	use	data	

• If	server	says	"yes"	to	TC's	prepare:	

• Must	remember	locks	and	values	across	crash+restart!	

• So	must	write	locks+values	to	disk	log,	before	replying	“yes”	

• If	reboot,	then	read	locks+values	from	disk	

• If	server	has	not	said	"yes"	to	a	prepare:	

• If	crash+restart,	server	can	release	locks	and	discard	data	

• And	then	say	"no"	to	TC's	prepare	message



• What	are	the	strengths/weaknesses	of	2PC?



Key	Insight	for	3-PC

• Cannot	abort	unless	we	know	that	no	one	has	
commiVed	

• We	need	an	algorithm	that	lets	us	infer	the	state	of	
failed	nodes	

• Introduce	an	addi1onal	state	that	helps	us	in	our	
reasoning	

• But	start	with	the	assump1on	that	there	are	no	
communica1on	failures



3-Phase	Commit

• Two	approaches:	

1. Focus	only	on	site	failures	

• Non-blocking,	unless	all	sites	fails	

• Timeout						site	at	the	other	end	failed	

• Communica1on	failures	can	produce	inconsistencies	

2. Tolerate	both	site	and	communica1on	failures	

• par1al	failures	can	s1ll	cause	blocking,	but	less	ohen	
than	in	2PC

≡



Blocking	and	uncertainty
Why	does	uncertainty	lead	to	blocking?	

• An	uncertain	process	does	not	know	whether	it	can	safely	
decide	COMMIT	or	ABORT	because	some	of	the	processes	it	
cannot	reach	could	have	decided	either	

Non-blocking	Property	
If	any	opera1onal	process	is	uncertain,	then	no	process	has	
decided	COMMIT



C

2PC	Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT In U,  both A and C are 
reachable!

pi



C

2PC	Revisited

U A

Vote-REQ
YES

Vote-REQ
NO

ABORT

COMMIT

pi

PC

In state PC 

a process knows that it 

will commit unless it fails



Coordinator	Failure

• Elect	new	coordinator	and	have	it	collect	the	state	of	
the	system	

• If	any	node	is	commiVed,	then	send	commit	
messages	to	all	other	nodes	

• If	all	nodes	are	uncertain,	what	should	we	do?



3PC:	The	Protocol
Dale Skeen (1982)

I.    sends VOTE-REQ to all participants.


II. When    receives a VOTE-REQ, it responds by sending a vote to  
if       = No, then          := ABORT and    halts.


III.   collects votes from all.                                                
if all votes are Yes, then   sends PRECOMMIT to all              
else          := ABORT; sends ABORT to all who voted Yes  halts


IV. if    receives PRECOMMIT then it sends ACK to  


V.   collects ACKs from all.                                              
When all ACKs have been received,          := COMMIT;                 
 sends COMMIT to all.


VI. When    receives COMMIT,     sets         := COMMIT and halts.

c

pi

votei decidei

c

c

decidec

c

c

pi

pi

decidec

c

pi pi decidei

c



Termina1on	protocol:	
Process	states

At	any	1me	while	running		3	PC,	each	par1cipant	can	be	in	
exactly	one	of	these	4	states:	

Aborted				 	 Not	voted,	voted	NO,	received	ABORT	

Uncertain	 			Voted	YES,	not	received	PRECOMMIT	

CommiVable	 Received	PRECOMMIT,	not	COMMIT	

CommiVed	 	 Received	COMMIT



Not	all	states		
are	compa1ble

Aborted Uncertain Committable Committed

Aborted Y Y N N

Uncertain Y Y Y N

Committable N Y Y Y

Committed N N Y Y



Failures

• Things	to	worry	about:	

• 1meouts:	par1cipant	failure/coordinator	failure	

• recovering	par1cipant	

• total	failures



Timeout	Ac1ons

Processes	are	wai1ng	on	steps	2,	3,	4,	5,	and	6

Step 3  Coordinator is waiting for  
vote from participants

Step 4   waits for PRECOMMIT Step 5  Coordinator waits for ACKs

Step 6    waits for COMMIT 

Step 2     is waiting for VOTE-REQ 
from coordinator

pi

pi

pi



Timeout	Ac1ons

Processes	are	wai1ng	on	steps	2,	3,	4,	5,	and	6

Step 3  Coordinator is waiting for  
vote from participants

Step 4   waits for PRECOMMIT Step 5  Coordinator waits for ACKs

Step 6    waits for COMMIT 

Step 2     is waiting for VOTE-REQ 
from coordinator

pi

pi

pi

Exactly as in 2PC Exactly as in 2PC

Coordinator sends COMMITRun some Termination protocol

Run some Termination protocol



Termina1on	protocol
TR1. if some process decided ABORT, then?


TR2. if some process decided COMMIT, 
then?


TR3. if all processes that reported state

      are uncertain, then?


TR4. if some process is committable, but

      none committed, then?


When    times out, it 
starts an election protocol 
to elect a new 
coordinator


The new coordinator 
sends STATE-REQ to all 
processes that 
participated in the 
election


The new coordinator 
collects the states and 
follows a termination rule

pi



Termina1on	protocol
TR1. if some process decided ABORT, then

         decide ABORT

         send ABORT to all

         halt


TR2. if some process decided COMMIT, then

         decide COMMIT

         send COMMIT to all

         halt


TR3. if all processes that reported state

      are uncertain, then

         decide ABORT

         send ABORT to all

         halt


TR4. if some process is committable, but

      none committed, then

         send PRECOMMIT to uncertain processes

          wait for ACKs

          send COMMIT to all

          halt

When    times out, it 
starts an election protocol 
to elect a new 
coordinator


The new coordinator 
sends STATE-REQ to all 
processes that 
participated in the 
election


The new coordinator 
collects the states and 
follows a termination rule

pi



Discussion

• What	are	the	strengths/weaknesses	of	3PC?



Shared	Virtual	Memory



Context

• Parallel	architectures	&	programming	models	

• Bus-based	shared	memory	mul1processors	

• h/w	support	for	coherent	shared	memory	

• can	run	both	shared	memory	&	message	passing	

• scalable	to	10’s	of	nodes	

• Distributed	memory	machines/clusters	of	worksta1on	

• provides	message	passing	interface	

• scalable	up	to	1000s	of	nodes	

• cheap!		economies	of	scale,	commodity	shelf	h/w



Distributed	Shared	
Memory

• Radical	idea:	let	us	not	have	the	hardware	dictate	
what	programming	model	we	can	use	

• Provide	a	shared	address	space	abstrac1on	even	on	
clusters	

• Is	this	a	good	idea?		What	are	the	upsides/downsides	
of	this	approach?



How	do	we	provide	this	abstrac1on?

• Opera1ng	system	support:		

• e.g.,	Ivy,	Treadmarks,	Munin	

• Compiler	support	(Shasta)	

• minimize	overhead	through	compiler	analysis	

• object	granularity	as	opposed	to	byte	granularity	

• no1ons	of	immutable	data,	sharing	paVerns	

• Limited	hardware	support	(Wisconsin	Wind	Tunnel,	
DEC	memory	channel)



IVY	Shared	Virtual	Memory

• Seminal	system	that	sparked	the	en1re	field	of	DSM	
(distributed	shared	memory)	

• Mo1va1ons:	

• sharing	things	on	a	network	

• “embassy”	system	to	support	a	network	file	system	between	
two	different	OSes	

• parallel	scheme	run	1me	system	on	a	cluster	

• Focus:	parallel	compu1ng	and	not	distributed	compu1ng	

• less	emphasis	on	request-reply,	fault-tolerance,	security



Tradi1onal	Virtual	Memory

CPU
MMU
Cache

DRAM
Page
table

Node

Virtual
Memory

physical page # validVirt. page #

• Page Table entry:

• If “valid”, translation exists
• If “not valid”, traps into the kernel, gets the page, re-executes 

trapped instruction
• Check is made for every access;  TLB serves as a cache for the 

page table entries



Shared	Virtual	Memory

Shared
Virtual

Memory

CPU
MMU
Cache

DRAM
Page
table

Node 1

CPU
MMU
Cache

DRAM
Page
table

Node N

...

• Pool of “shared pages”: if not 
local, page is not mapped 

• Page table entry access bits 

• H/w detects read access to 
invalid page 
• read faults 

• H/w detects writes to mapped 
memory with no write access 
• write faults 

• OS maintains consistency at VM 
page level 
• copying data 
• setting access bits

•physical page # valid•Virt. page # access



Issues

• Programming	model	(as	in	coherence,	consistency,	
etc.)	

• Correctness	of	implementa1on	

• Performance	related	issues



Programming	Model

• Contract	between	programmer	and	h/w	

• Shared	memory	abstrac1on	typically	means	two	
related	concepts:	

• Coherence	

• Consistency	model	(e.g.,	sequen1al	consistency,	
linearizability)	

• What	is	the	difference	between	coherence	and	
sequen1al	consistency?



Coherence	vs.	Consistency

• Coherence:	writes	are	propagated	to	other	nodes;	the	
writes	to	a	par1cular	memory	loca1on	are	seen	in	
order	

• Consistency:	the	writes	to	mul1ple	dis1nct		
memory	loca1on	or	writes	from	mul1ple	processors	
to	the	same	loca1on	are	seen	in	a	well-defined	order



Sequen1al	Consistency
“The result of any execution is the same as if the 
operations of all the processes were executed in some 
sequential order and the operations of each individual 
process appear in this sequence in the order specified 
by its program” (Lamport, 1979)
p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)a

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)b



Sequen1al	Consistency
“The result of any execution is the same as if the 
operations of all the processes were executed in some 
sequential order and the operations of each individual 
process appear in this sequence in the order specified 
by its program” (Lamport, 1979)
p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

Is this data store sequentially consistent?

1 2

1 2

R(x)a

R(x)bR(x)a



Other	Consistency	Models

• Can	we	have	consistency	models	stronger	than	
sequen1al	consistency?	

• How	do	we	weaken	sequen1al	consistency?



Weakening Sequential 
Consistency: Causal Consistency

Writes that are potentially causally related must be 
seen by all processes in the same order. Concurrent 
writes may be seen in a different order on different 
machines. (Hutto and Ahamad, 1990)

Is this data store sequentially consistent?  
Causally consistent? 

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c



More Weakening: FIFO 
Consistency

“Writes done by a single process are seen by all other processes in 
the order in which they were issued, but writes from different 
processes may be seen in a different order by different 
processes” (PRAM consistency, Lipton and Sandberg 1988)

p1 :

p2 :

p3 :

p4 :

W (x)a

W (x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)a

W (x)c

R(x)c

R(x)c

Is this data store causally consistent?
Is this data store FIFO consistent?



Programming Complexity

Process 


if         then

kill


Process


if    then

kill

x :=1

(y = 0)

(p2) (p1)

(x = 0)

y :=1

p1 p2

What are the possible outcomes?

Initially, x = y = 0



• What	do	you	make	out	of	these	consistency	models?



Ivy	DSM

• Goal:	provide	sequen1ally	consistent	shared	memory	

• Baseline	Implementa1on:	

• centralized	manager	

• manager	maintains	the	“owner”	and	the	set	of	readers	
(“copyset”)



Read	Faults

• Handler	on	client:	

• asks	manager	

• manager	forwards	request	to	owner	

• owner	sends	the	page	

• requester	sends	an	ACK	to	manager



Pseudocode

Read Fault Handler: 

Lock(Ptable[p].lock); 
ask manager for p; 
receive p; 
send confirmation to manager; 
Ptable[p].access = read; 
Unlock(Ptable[p].lock);

Read Server: 

Lock(Ptable[p].lock); 
Ptable[p].access = read; 
send copy of p; 
Unlock(Ptable[p].lock);

Manager: 

Lock(Info[p].lock); 
Info[p].copyset = 
      Info[p].copyset U {reqNode}; 
ask Info[p].owner to send p; 
receive confirmation from reqNode; 
Unlock(Info[p].lock);



Write	Faults

• Handling	includes	invalida1ons:	

• make	request	to	manager	

• copies	are	invalidated	

• manager	forwards	request	to	owner	

• owner	relinquishes	page	to	requester	

• requester	sends	an	ACK	to	the	owner



Write	Pseudocode

Write Fault Handler: 

Lock(Ptable[p].lock); 
ask manager for p; 
receive p; 
send confirmation to manager; 
Ptable[p].access = write; 
Unlock(Ptable[p].lock);

Manager: 

Lock(Info[p].lock); 
Invalid(p, Info[p].copyset); 
Info[p].copyset = {}; 
ask Info[p].owner to send p; 
receive confirmation from reqNode; 
Unlock(Info[p].lock);

Write Server: 

Lock(Ptable[p].lock); 
Ptable[p].access = nil; 
send copy of p; 
Unlock(Ptable[p].lock);



Scenarios

• Consider	P1	and	P2	caching	a	page	with	“read”	perms	

• What	happens	if	both	perform	a	“write”	at	the	same	
1me?



Ques1on

• Can	the	confirma1on	messages	be	eliminated?



Scenarios

• Consider	P1	is	owner	of	page	

• P2	performs	a	read	

• P3	performs	a	write	

• What	if	manager	handles	write	before	read	is	
complete?



Improved	Manager

• Owner	serves	as	the	manager	for	each	page

Read Fault Handler: 

Lock(Ptable[p].lock); 
ask manager for p; 
receive p; 
Ptable[p].access = read; 
Unlock(Ptable[p].lock);

Read Server: 

Lock(Ptable[p].lock); 
If I am owner { 
   Ptable[p].access = read; 
   Ptable[p].copyset = 
       Ptable[p].copyset U {reqNode}; 
   send copy of p; 
} else { 
   forward request to probable owner; 
}  
Unlock(Ptable[p].lock);



Performance	Ques1ons

• In	what	situa1ons	will	IVY	perform	well?	

• How	can	we	improve	IVY’s	performance?


