Distributed Systems
Security

Topics

® Byzantine fault resistance

Fault Tolerance

® \We have so far assumed “fail-stop” failures (e.g.,
power failures or system crashes)

® In other words, if the server is up, it follows the
rotocol

Larger Class of Failures

® Can one handle a larger class of failures?

® Buggy servers that compute incorrectly rather than stopping

\Yi[eYol=]

® Provide a replicated state machine abstraction

® Assume 2f+1 of 3f+1 nodes are non-faulty

® In other words, one needs 3f+1 replicas to handle f faults

General Idea

® Primary-backup plus quorum system

® Executions are sequences of views

® C(Clients send signed commands to primary of current view

Attacker’s Powers

® \Worst case: a single attacker controls the f faulty
replicas

Supplies the code that faulty replicas run

Knows the code the non-faulty replicas are running

What faults cannot happen?

® No more than f out of 3f+1 replicas can be faulty

® No client failure -- clients can never do anything bad
(or rather such behavior can be detected using

What could go wrong?

® Primary could be faulty!

® Could ignore commands; assign same sequence humber to
different requests; skip sequence numbers; etc.

Backups could be faulty!

Example Use Scenario

® Arvind:
echo A > grade

echo B > grade

Designh 1

® client, n servers

® client sends request to all of them

® waits for all n to reply

Design 2

® let us have replicas vote

® 2f+1 servers, assume no more than f are faulty

® client waits for f+1 matching replies

Issues with Design 2

® f+1 matching replies might be f bad nodes & 1 good
® so maybe only one good node got the operation!
® next operation also waits for f+1

® might not include that one good node that saw op1

® example: S1S2 S3 (S1 is bad)

Design 3

® 3f+1 servers, of which at most f are faulty

® client waits for 2f+1 matching replies

® f bad nodes plus a majority of the good nodes

Refined Approach

® let us have a primary to pick order for concurrent
client requests

use a quorum of 2f+1 out of 3f+1 nodes

have a mechanism to deal with faulty primary

PBFT: Overview

® Normal operation: how the protocol works in the
absence of failures; hopefully, the common case

® View changes: how to depose a faulty primary and
elect a new one

Normal Operation

® Three phases:
® Pre-prepare: assigns sequence number to request

® Prepare: ensures fault-tolerant consistent ordering of
requests within views

® Commit: ensures fault-tolerant consistent ordering of

Client issues request

Pre-prepare

Pre-prepare

1
v
] ‘) DY
e 1. - d T L 3
bt " . b
o h ’
” TC ’ 7, WIT s
P > - -
.y /
e b,:,.' . !
N - F J wil
' R R _Il Wl "0_;
A 40 AN e el
- - g Y -

3 [& t‘“';)
s \IvV

. AR .~
.;Q.-.‘-;.;::.‘:k’f-a,\--..: o

'

o e N 1

A10E T

1A '™ YN
' > | el
2 nA‘.;.____,_._‘l_-.:‘:‘ E ,J '!:,, ‘J‘/}

omami b e —

G
ey
.

Pre-prepare

Prepare

= ; !“—. : perween T

Prepare

Prepare Certificate

® P-certificates ensure total order within views
® Replica produces P-certificate(m,v,n) iff its log holds:

® Therequestm

® A PRE-PREPARE for m in view v with sequence number n

P-certificates are not enough

® A P-certificate proves that a majority of correct
replicas has agreed on a sequence number for a
lient’

Commit Certificate

® C-certificates ensure total order across views

® can’t miss P-certificate during a view change

® A replica has a C-certificate(m,v,n) if:

® it had a P-certificate(m,v,n)

Backups Displace Primary

® A disgruntled backup mutinies:

® stops accepting messages (but for VIEW-CHANGE & NEW-
VIEW)

® multicasts <VIEW-CHANGE,v+1, P>

® P contains all P-Certificates known to replica i

View Change: New Primary

® The “primary elect” p’ (replica v+1 mod N) extracts from the
new-view certificate V :

® the highest sequence number h of any message for which
V contains a P-certificate

® two sets O and N:

® if thereis a P-certificate forn,minV,n<h

View Change: Backup

® Backup accepts NEW-VIEW message for v+1 if
® itissigned properly

® it containsin V a valid VIEW-CHANGE messages for v+1

® it can verify locally that O is correct (repeating the primary’s

Garbage Collection

® For safety, a correct replica keeps in log messages
about request o until it

® o0 has been executed by a majority of correct replicas, and

® this fact can proven during a view change

BFT Discussion

® |s PBFT practical?

Topics

® Byzantine fault resistance

Bitcoin

® a digital currency

Why digital currency?

® might make online payments easier

® credit cards have worked well but aren't perfect

What is hard technically?

® forgery

What’s hard socially/economically?

® why do Bitcoins have value?

® how to pay for infrastructure?

ldea

® Signed sequence of transactions

® there are a bunch of coins, each owned by someone

Transaction Record

® pub(userl): public key of new owner

® hash(prev): hash of this coin's previous transaction
record

® sig(user2): signature over transaction by previous

Transaction Example

1. Y owns a coin, previously given to it by X:
® T7:pub(Y), hash(T6), sig(X)
2. Y buys a hamburger from Z and pays with this coin

® 7 sends public key to Y

® Y creates a new transaction and signs it

Double Spending

® Y creates two transactions for same coin: Y->Z, Y->Q

® both with hash(T7)

® Y shows different transactions to Z and Q

Defense

® publish log of all transactions to everyone, in same
order

Strawman Solution

® Assume a p2p network
® Peers flood new transactions over “overlay”

® Transaction is acceptable only if majority of peers

BitCoin Block Chain

® the block chain contains transactions on all coins
® many peers, each with a complete copy of the chain

® proposed transactions flooded to all peers

® new blocks flooded to all peers

“Mining” Blocks

® requirement: hash(block) has N leading zeros
® ecach peer tries nonce values until this works out
® trying one nonce is fast, but most nonces won't work

® mining a block not a specific fixed amount of work

® one node can take months to create one block

Timing

® start: all peers know till BS

® and are working on B6 (trying different nonces)

® Y sends Y->Z transaction to peers, which flood it

Double Spending

® what if Y sends out Y->Z and Y->Q at the same time?

® no correct peer will accept both

Forked Chain

® each peer believes whichever of BZ/BQ it saw first

® tries to create a successor

® if many more saw BZ than BQ, more will mine for BZ

Double Spending Defense

® wait for enough blocks to be minted

® if a few blocks have been minted, unlikely that a different fork will
win

® if selling a high-value item, then wait for a few blocks before shipping

® could attacker start a fork from an old block?

“Tho - @ =

BitCoin Summary

® Key idea: block chain

® Public ledger is a great idea

Class Summary

® |Implementing distributed systems: system and protocol
design

® Core algorithms: clocks, snapshots, transactions, 2PC,
Paxos

Trends

® Transactions over geo-distributed, replicated data

® COPS (Princeton), Tapir (UW), RIFL/RamCloud/Raft (Stanford)

® Accelerating distributed systems using hardware
support

