MetaSync
File Synchronization Across Multiple
Untrusted Storage Services

Seungyeop Han, Haichen Shen, Taesoo Kim*,

Arvind Krishnamurthy, Thomas Anderson, and
David Wetherall

University of Washington *Georgia Institute of Technology

File sync services are popular

400M of Dropbox users reached in June 2015

Many sync service providers

2 e

Dropbox (2GB) Google Drive (15GB)

@ bo

MS OneDrive (15GB) Box.net (10GB)

Y]
Baid&EE

Baidu(2TB)

Can we rely on any single service?
Cloud Storage Often Results in Data Loss

All The Different Ways That 'ICloud' Naked Celebrity
Photo Leak Might Have Happened

E Shutting down Ubuntu One
.. file services

U1, UBUNTU ONE

_ ONE

A Dropbox confirms that a bug within Selective Sync may have caused data loss (githubusercontent.com)

128 points by ghuntley 6 days ago | comments

4

Existing Approaches

* Encrypt files to prevent modification
— Boxcryptor

e Rewrite file sync service to reduce trust
— SUNDR (Li et al., 04), DEPOT (Mahajan et al., 10)

MetaSync

MetaSync:

Higher availability, greater capacity, higher performance
Stronger confidentiality & integrity

Can we build a better file synchronization
system across multiple existing services?

Goals

Higher availability
Stronger confidentiality & integrity
Greater capacity and higher performance

No service-service, client-client
communication

No additional server
Open source software

Overview

MetaSync Design
Implementation
Evaluation

Conclusion

Key Challenges

* Maintain a globally consistent view of the
synchronized files across multiple clients

* Using only the service providers’ unmodified
APIs without any centralized server

* Even in the presence of service failure

1. File Management\

Overview of the Design

Object
Store

Svnchronization

Replication

Z

A
_/ Backend abstractions

N—
Local Storage

Remote
Services

Object Store

* Similar data structure with version control
systems (e.g., git)
* Content-based addressing
— File name = hash of the contents
— De-duplication
— Simple integrity checks
* Directories form a hash tree

— Independent & concurrent updates

Object Store

head =f12...
// \\
Dirl Dir2 Large.bin
/ ! N
abc... 4c0... 20e...
[| \ ~N

/ I

smalll small2

VN

(=)o)

* Files are chunked or grouped into blobs
* Theroot hash =f12... uniquely identifies a snapshot

Object Store

old =f12... head =07c...

A I AN //\\

Diri D;/i/z;rg&bn/ Large.bin
_ | N\ \

abc... 4c0... 20e... lae...

- \ > L=\
smalll small2 \

G

* Files are chunked or grouped into blobs
* Theroot hash =f12... uniquely identifies a snapshot

Overview of the Design

MetaSync ‘ 2. Consistent update \

- N
Object | Synchronization Replication —
Store PR

Wactions —
A Local Storage

Remote
Services

Updating Global View

Head | Current root hash

Clientl Prev | Previously synchronized point
Global
View
vO ab1...
Client2 Prev
Head

O master

Updating Global View

vl c10...
Clientl Prev ——>| Head
Global
View
vO abl...
Client2 Prev
Head

O master

Updating Global View

Head
Clientl Prev
Global
View
vO abl... vl c10...
Client2 Prev
Head

O master

Updating Global View

vl c10...

Head
Clientl Prey
Global
View
vO abl...
Client2 Prev
Head

O master

Updating Global View

v2 f13...
Clientl Prev Head
Global
View
vO abl... vl c10...
Client2 Prev Head
v2 7b3...

O master

Updating Global View

v2 f13...

Clientl Prev F— Head

Global
View
vO abl... vl c10... v2 7b3...
Client2 Prev
Head

O master

Updating Global View

Clientl

Global
View

vO ab1l... vl c10...

Client2

Prev

—> Head

v3 a3l...

v2 7b3...

Prev

Head

O master

Consistent Update of Global View

CEDrEPC *
MetaSync % MetaSync

root=f12... root=b05...

* Need to handle concurrent updates,
unavailable services based on existing APIs

Paxos

* Multi-round non-blocking consensus
algorithm

— Safe regardless of failures
— Progress if majority is alive

O
@

Proposer Acceptor

23

Metasync: Simulate Paxos

* Use an append-only list to log Paxos messages
— Client sends normal Paxos messages
— Upon arrival of message, service appends it into a list
— Client can fetch a list of the ordered messages

* Each service provider has APIs to build append-
only list
— Google Drive, OneDrive, Box: Comments on a file
— Dropbox: Revision list of a file
— Baidu: Files in a directory

Metasync: Passive Paxos (pPaxos)

* Backend services work as passive acceptor
* Acceptor decisions are delegated to clients

propose(3)

P1

®-

S2

- @

Clients Passive Storage Services

S3

25

Metasync: Passive Paxos (pPaxos)

* Backend services work as passive acceptor
* Acceptor decisions are delegated to clients

S1

e

S2

P2

S3

propose(2)

Clients Passive Storage Services

26

Metasync: Passive Paxos (pPaxos)

* Backend services work as passive acceptor
* Acceptor decisions are delegated to clients

fetch(S1)

fetch(S2) ‘ P1
fetch(S3)
2O

Clients Passive Storage Services

®-

S2

S3 ‘

Metasync: Passive Paxos (pPaxos)

* Backend services work as passive acceptor
* Acceptor decisions are delegated to clients

accept(3, v1)

fetch P1

®-

S2

- @

Clients Passive Storage Services

S3 ‘

DiskPaxos

Di:#k 2

‘ Propose

P1 P2

DiskPaxos

Paxos vs. Disk Paxos vs. pPaxos

* Disk Paxos: maintains a block per client
Gafni & Lamport ’02

[Acceptor] Acceptor] [Acceptor]

: A—h— A
1 |computation i ! disk blocks i append-only
1 I |
Propose| | Accept Propose E ," Check Propose ECheck
\ 4 i ." i
{ Proposer] [Proposer] [Proposer]
Paxos Disk Paxos pPaxos
require | Requires acceptor API
msgs O(acceptors) O(clients x acceptors) O(acceptors)
31

Overview of the Design

e —
MetaSync 3. Replicate objects
. N
Object Synchronization Replication —
Store - PR
Backend abstractioﬁs\/ —
A A — Local Storage

Remote
Services

Stable Deterministic Mapping

 MetaSync replicates objects R times across S
storage providers (R<S)

* Requirements
— Share minimal information among services/clients
— Support variation in storage size
— Minimize realignment upon configuration changes

* Deterministic mapping
map:H — {s:|s| =R,s C S}
— E.g., map(7al...) = Dropbox, Google

Deterministic Mapping Example

Capacity

* Service ={A(1), B(2), C(2), D(1)}

 N={Al, B1, B2, C1, C2, D1} (hormalized)
 Map(i) = Sorted(N, key= md5(i, servicelD, vID))

t map[0] = [A1, C2, D1, B1, B2, C1] =
map[1] = [B2, B1, C1, C2, A1, D1] =

R=2
[A, C

B, C]

| map[19] = [C2, B1, D1, A1, B2, C1] =[C, B]

bcl... mod 20 = 1 => Replicateonto B and C

Deterministic Mapping Example

* When Cis removed R <2

t map[0] = [Al, C2, D1, B1, B2, C1] = [A, C]
mapl[l] = [B2, B1, C1, C2, A1, D1] = [B, C]

| map[19] = [C2, B1, D1, A1, B2, C1] = [C, B]

&

t map|[0] = [A1, D1, B1, B2] = [A, D]
map[1l] = [B2, B1, A1, D1] = [B, A]

| map[19] = [B1, D1, A1, B2] = [B,D]

The sorted order is maintained
=> Minimize realignments

Implementation

* Prototyped with Python

— ~8k lines of code
* Currently supports 5 backend services

— Dropbox, Google Drive, OneDrive, Box.net, Baidu
* Two front-end clients

— Command line client
— Sync daemon

Evaluation

* How is the end-to-end performance?

 What’s the performance characteristics of
pPaxos?

* How quickly does MetaSync reconfigure
mappings?

Evaluation

* How is the end-to-end performance?

 What’s the performance characteristics of
pPaxos?

End-to-End Performance

Synchronize the target between two computers

Dropbox Google MetaSync

Linux Kernel 2h 45m > 3hrs 12m 18s

920 directories
15k files, 166MB

Pictures 415s 143s 112s
50 files, 193MB

(S=4,R=2)

Performance gains are from:
e Parallel upload/download with multiple providers
* Combined small filesinto a blob

Latency of pPaxos

35
30
25
0 ===Google
<20 ©
e ===Dropbox
(V]
E’ 15 OneDrive
10 e==B0oX
===Baidu
5 ; :
r
O | | | | 1

of Proposers

Latency is not degraded with increasing concurrent proposers
or adding slow backend storage service

40

Latency of pPaxos

35
30
25
. ===(G0oogle
L
320 ===Dropbox
c
% 15 ===0neDrive
—
=B 0X
10 _
===Baidu
e
r
O | | | | 1

of Proposers

Latency is not degraded with increasing concurrent proposers
or adding slow backend storage service

41

Conclusion

* MetaSync provides a secure, reliable, and
performant files sync service on top of
popular cloud providers

— To achieve a consistent update, we devise a new
client-based Paxos

— To minimize redistribution, we present a stable
deterministic mapping

* Source code is available:
— http://uwnetworkslab.github.io/metasync/

