Weak Consistency

Dan Ports, CSEP 552



CAP Theorem

 Can’t have all three of
consistency,
availability, and
tolerance to partitions

e (butthe devil is in the details!)



CAP

Eric Brewer, 2000: conjecture on reliable distributed
systems

Gilbert & Lynch 2002: proved
(for certain values of “consistency” and “availability™)

really influential and really controversial
e motivated the consistency model in many NoSQL systems
e Stonebraker: “encourages engineers to make awful decisions”

usually misinterpreted!



Usual Formulation

Choose any two of:
consistency, availability, partition tolerance

Then: want avallability, so need to give up on
consistency

Or maybe: want consistency, so availability must
sufter

Implies 3 possibilities: CA, AP, CP



-irst problem: type error

» Consistency and availability are properties of the
system

* Partition tolerance is an assumption about the
environment

* \What does it mean to (not) choose partition tolerance”
e |.e., what does it mean to have a CA system?

» Better phrasing: when the network is partitioned,
do we give up on consistency or availability”



Other problems

* What does (not) choosing consistency mean?
What about weak consistency levels?

* What does not providing availability mean”
Does that mean the system is always down”

 What if network partitions are rare”
What happens the rest of the time”



A more precise formulation

o (from Gilbert & Lynch’s proof)

* model: a set of processes connected by a network
subject to communication failures

* meaning messages may be delayed or lost

* |tis impossible to implement a non-trivial linearizable
service

e that guarantees a response to any request from any
Process



Proving this statement

Not too surprising

Suppose there are two nodes, A and B
and they can’'t communicate

first: write(x) on A
then: read(x) on B

avallability says B's request needs to succeed,
inearizability says it needs to return A's value



How does this relate to FLP?

 CAP: when messages can be delayed or lost in the
network, can't have both consistency and availability

e FLP: when one node can fail and the network is
asynchronous, can't reliably solve consensus

 FLP is a stronger (i.e., more surprising) result
 CAP allows network partitions / packets lost entirely

 CAP: every node to remain available
FLP: failed nodes don’t need to come to consensus



Examples

* Where do systems we've seen before fall in”?
Are they consistent? Available®

e Lab?2
e Paxos
 Chubby
e Spanner

« Dynamo



Paxos avallapility

Wasn't Paxos designed to provide high availability
and fault tolerance”

Remains available as long as a majority is up and
can communicate

not availability in the CAP theorem sense!
would require any node to be able to participate
even when partitioned!

s this enough”?



Do partitions matter”

e Stonebraker: "it doesn’'t much matter what you do
when confronted with network partitions’
because they're so rare

* Do you agree”



Do partitions matter”

OK, but they should still be rare

When the system is not partitioned, can we have both
consistency and availability?

As far as the CAP theorem is concerned, yes!
In practice”

e systems that give up availability usually only fail when there’s
a partition

e systems that give up consistency usually do so all the time.
Why?



Another “P”: Pertormance

* providing strong consistency means coordinating
across replicas

* means that some requests must wait for a cross-
replica round trip to finish

* weak consistency can have higher performance

* write locally, propagate changes to other replicas
In background



CAP implications

 Need to give up on consistency when
e always want the system to be online
* need to support disconnected operation
* need faster replies than majority RTT

 But can have consistency and availability together
when a majority of nodes can communicate

* and can redirect clients to that majority



Dynamo and COPS

 What kind of consistency can we provide if we want
a system with

* high availability
* |low latency

e partition tolerance



Dynamo

* \WWhat consistency level does Dynamo provide?

e How do inconsistencies arise?

e Sloppy quorums: read at quorum of N nodes

e ...but might not be a majority

e ...but might not always be the same N nodes
(just take healthy ones)



COPS

 (Guarantees causal consistency instead of eventual (or no)
consistency

* recall Facebook example: remove friend, post message

 If get returns result of update X, also reflects all updates
that causally preceed X

* put causally concurrent updates can proceed in any
other

o “Causal+”: contlicts will eventually converge at all replicas



COPS Implementation

 Multiple sites, each with full copy of the data
* partitioned and replicated w/ chain replication
* Writes return to client after updating local site
* then updates propagated asynchronously to others

 Lamport clocks and dependency lists in update
message — ensures they're applied in order



Next week

Co-Designing Distributed Systems and the Network:
Speculative Paxos and NOPaxos (Adriana Szekeres)

MetaSync: File Synchronization Across Multiple
Untrusted Sources (Haichen Shen)

Verdi: A Framework for Implementing and Formally
Veritying Distributed Systems (James Wilcox and Doug
Woo0s)

Tales of the Tail: Hardware, OS, and Application-level
Sources of Tail Latency (Naveen Kr. Sharma)



