
Weak Consistency

Dan Ports, CSEP 552



CAP Theorem

• Can’t have all three of 
consistency, 
availability, and  
tolerance to partitions 

• (but the devil is in the details!)



CAP
• Eric Brewer, 2000: conjecture on reliable distributed 

systems 

• Gilbert & Lynch 2002: proved 
(for certain values of “consistency” and “availability”) 

• really influential and really controversial 

• motivated the consistency model in many NoSQL systems 

• Stonebraker: “encourages engineers to make awful decisions” 

• usually misinterpreted!



Usual Formulation
• Choose any two of:  

consistency, availability, partition tolerance 

• Then: want availability, so need to give up on 
consistency 

• Or maybe: want consistency, so availability must 
suffer 

• Implies 3 possibilities: CA, AP, CP



First problem: type error
• Consistency and availability are properties of the 

system 

• Partition tolerance is an assumption about the 
environment 

• What does it mean to (not) choose partition tolerance? 

• i.e., what does it mean to have a CA system? 

• Better phrasing: when the network is partitioned,  
do we give up on consistency or availability?



Other problems

• What does (not) choosing consistency mean?  
What about weak consistency levels? 

• What does not providing availability mean?  
Does that mean the system is always down? 

• What if network partitions are rare?  
What happens the rest of the time?



A more precise formulation
• (from Gilbert & Lynch’s proof) 

• model: a set of processes connected by a network 
subject to communication failures 

• meaning messages may be delayed or lost 

• it is impossible to implement a non-trivial linearizable 
service 

• that guarantees a response to any request from any 
process



Proving this statement
• Not too surprising 

• Suppose there are two nodes, A and B  
and they can’t communicate 

• first: write(x) on A 

• then: read(x) on B 

• availability says B’s request needs to succeed, 
linearizability says it needs to return A’s value



How does this relate to FLP?
• CAP: when messages can be delayed or lost in the 

network, can’t have both consistency and availability 

• FLP: when one node can fail and the network is 
asynchronous, can’t reliably solve consensus 

• FLP is a stronger (i.e., more surprising) result 

• CAP allows network partitions / packets lost entirely 

• CAP: every node to remain available 
FLP: failed nodes don’t need to come to consensus



Examples
• Where do systems we’ve seen before fall in?  

Are they consistent? Available? 

• Lab 2 

• Paxos 

• Chubby 

• Spanner 

• Dynamo



Paxos availability
• Wasn’t Paxos designed to provide high availability 

and fault tolerance? 

• Remains available as long as a majority is up and 
can communicate 

• not availability in the CAP theorem sense!  
would require any node to be able to participate 
even when partitioned! 

• Is this enough?



Do partitions matter?

• Stonebraker: "it doesn’t much matter what you do 
when confronted with network partitions"  
because they’re so rare 

• Do you agree?



Do partitions matter?
• OK, but they should still be rare 

• When the system is not partitioned, can we have both 
consistency and availability? 

• As far as the CAP theorem is concerned, yes! 

• In practice? 

• systems that give up availability usually only fail when there’s 
a partition 

• systems that give up consistency usually do so all the time. 
Why?



Another “P”: Performance
• providing strong consistency means coordinating 

across replicas 

• means that some requests must wait for a cross-
replica round trip to finish 

• weak consistency can have higher performance 

• write locally, propagate changes to other replicas 
in background



CAP implications
• Need to give up on consistency when 

• always want the system to be online 

• need to support disconnected operation 

• need faster replies than majority RTT 

• But can have consistency and availability together 
when a majority of nodes can communicate 

• and can redirect clients to that majority



Dynamo and COPS

• What kind of consistency can we provide if we want 
a system with 

• high availability 

• low latency 

• partition tolerance



Dynamo
• What consistency level does Dynamo provide? 

• How do inconsistencies arise? 

• Sloppy quorums: read at quorum of N nodes 

• …but might not be a majority 

• …but might not always be the same N nodes 
(just take healthy ones)



COPS
• Guarantees causal consistency instead of eventual (or no) 

consistency 

• recall Facebook example: remove friend, post message 

• if get returns result of update X, also reflects all updates 
that causally preceed X 

• but causally concurrent updates can proceed in any 
other 

• “Causal+”: conflicts will eventually converge at all replicas



COPS Implementation
• Multiple sites, each with full copy of the data 

• partitioned and replicated w/ chain replication 

• Writes return to client after updating local site 

• then updates propagated asynchronously to others 

• Lamport clocks and dependency lists in update 
message — ensures they’re applied in order



Next week
• Co-Designing Distributed Systems and the Network:  

Speculative Paxos and NOPaxos (Adriana Szekeres) 

• MetaSync: File Synchronization Across Multiple 
Untrusted Sources (Haichen Shen) 

• Verdi: A Framework for Implementing and Formally 
Verifying Distributed Systems (James Wilcox and Doug 
Woos) 

• Tales of the Tail: Hardware, OS, and Application-level 
Sources of Tail Latency (Naveen Kr. Sharma)


