Paxos and Replication

Dan Ports, CSEP 552



Today: achieving consensus with
Paxos

and how to use this to build a
replicated system



| ast week

web web
FE FE | |
Scaling a web service
$ $ using front-end caching
Network

...but what about the
database”

DB




INsteadq:

web FE web FE web FE
Network
gl S S e

replica

—

DB

—

DB
replica

—

DB
replica

S—

-ow do we replicate

the database?

How do we make
sure that all replicas
have the same state”?

...even when some
replicas aren’t available?



Two weeks ago
(and ongoing!)
e [wo related answers:

e Chain Replication

e Lab 2 - Primary/backup replication

e Limitations of this approach

e Lab 2 - can only tolerate one replica failure
(sometimes not even that!)

e Both: need to have a fault-tolerant view service

e How would we make that fault-tolerant?



| ast week: Consensus

* The consensus problem:
* multiple processes start w/ an input value

* DrOCEeSSEes run a consensus protocol,
then output chosen value

* all non-tfaulty processes choose the same value



Paxos

Algorithm for solving consensus in an
asynchronous network

Can be used to implement a state machine
(VR, Lab 3, upcoming readings!)

Guarantees safety w/ any number of replica failures

Makes progress when a majority of replicas online



Paxos History

Viewstamped Replication — Liskov & Oki
Paxos — Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

First practical deployments

Widespread use!
Lamport wins Turing Award




Why such a long gap?

e Before its time?
 Paxos is just hard?

* QOriginal paper is intentionally obscure:

 “Recent archaeological discoveries on the island of
Paxos reveal that the parliament functioned despite the
peripatetic propensity of its part-time legislators. The
egislators maintained consistent copies of the
parliamentary record, despite their frequent forays from
the chamber and the forgettulness of their messengers.”




Vieanwhile, at MIT

Barbara Liskov & group develop
Viewstamped Replication: essentially same protocol

Original paper entangled with distributed transaction
system & language

VR Revisited paper tries to separate out replication
(similar: RAFT project at Stanford)

Liskov: 2008 Turing Award, for programming w/
abstract data types, I.e. object-oriented programming



1989
1990

1998

~2005

2010s
2014

Paxos History

Viewstamped Replication — Liskov & OKi
Paxos — Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

The ABCDs of Paxos [2001]

Paxos Made Simple [2001]

Paxos Made Practical [2007]

F Paxos Made Live [2007]

Paxos Made Moderately Complex [2011]

Widespread use!
Lamport wins Turing Award



Three challenges about Paxos

e How does it work”?
 Why does it work”?

* How do we use it to build a real system?

* (these are in increasing order of difficulty!)



Why is replication hard?

* Split brain problem:

Primary and backup unable to communicate w/ each
other, but clients can communicate w/ them

e Should backup consider primary failed and start
processing requests?

 What if the primary considers the backup is failed
and keeps processing requests”

 How does Lab 2 (and Chain Replication) deal with this”



Using consensus for
state machine replication

3 replicas, no designated primary, no view server
Replicas maintain log of operations
Clients send requests to some replica

Replica proposes client's request as next entry in
l0g, runs consensus

Once consensus completes:
execute next op in log and return to client



1
N

GET X /
X

E‘ € nll”.’B

1: PUT X=2




Two ways to use Paxos

» Basic approach (Lab 3)
e run a completely separate instance of Paxos
for each entry in the log
e | eader-based approach (Multi-Paxos, VR)

* uUse Paxos to elect a primary (aka leader)
and replace it it it tfails

e primary assigns order during its reign

* Most (but not all) real systems use leader-based Paxos



Paxos-per-operation

Each replica maintains a log of ops
Clients send RPC to any replica

Replica starts Paxos proposal for latest log number
 completely separate from all earlier Paxos runs
* note: agreement might choose a ditferent op!

Once agreement reached: execute log entries &
reply to client



lerminology

Proposers propose a value

Acceptors collectively choose one of the proposed
values

[ earners find out which value has been chosen

In lab3 (and pretty much everywherel!),
every node plays all three roles!



Paxos Interface

e Start(seq, v): propose v as value for instance seq

e fate, v := Status(seq):
find the agreed value for instance seg

e Correctness: if ag
all agreeing serve
(once agreement

reement reached,
's will agree on same value
reached, can’'t change mind!)




How does an individual
Paxos instance work?

Note: all of the following is in the context of deciding
on the value for one particular instance,
.e., what operation should be in log entry 47?




Why Is agreement hard”

Server 1 receives Put(x)=1 for op 2,
Server 2 receives Put(x)=3 for op 2

Each one must do something with the first operation it
receives

...yet clearly one must later change its decision
So: multiple-round protocol; tentative results?

Challenge: how do we know when a result is
tentative vs permanent?



Why Is agreement hard”

« S1and S2 want to select Put(x)=1 as op 2,
S3 and 5S4 don't respond

* \Want to be able to complete agreement w/ tailed
servers — so are S3 and S4 failed”

* or are they Just partitioned, and trying to
accept a different value for the same slot?

* How do we solve the split brain problem?



Key 1deas In Paxos

* Need multiple protocol rounds that
converge on same value

* Rely on majority quorums for agreement
to prevent the split brain problem



Majority Quorums

 Why do we need 2f+1 replicas to tolerate f failures?

» Every operation needs to talk w/ a majority (f+1)

e Have to be able to
proceed w/

request n-f responses
A

e Why?

e f of those might falil

e need one left

i .\. ./. t ./. *: (N-f)-f>1=>n2>2f+1




Another reason for quorums

* Majority quorums solve the split brain problem
e Suppose request N talks to a majority
* All previous requests also talked to a majority

* Key property: any two majority quorums intersect at at
least one replical

e S0 request N is guaranteed to see all previous operations

 What it the system is partitioned & no one can get a
majority”?



The mysterious f

e IS the number of faillures we can tolerate

e For Paxos, need 2f+1 replicas
(Chain Replication was f+1; some protocols need 3f+1)

e How do we choose 17

 Can we have more than 2f+1 replicas”



Paxos protocol overview

* Proposers select a value

* Proposers submit proposal to acceptors,
try to assemble a majority of responses

* might be concurrent proposers,
e.g., multiple clients submitting different ops

* acceptors must choose which requests they
accept to ensure that algorithm converges



Strawman

Proposer sends propose(v) to all acceptors
Acceptor accepts first proposal it hears

Proposer declares success if its value Is
accepted by a majority of acceptors

What can go wrong here?



Strawman

 What it no request gets a majority?

1. PUT X=2 1:PUTY=4 1:GETX

\ 4 v \ 4




Strawman

 What if there’s a tailure after a majority guorum?

1: PUT X=2 1:PUT Y=4 1:PUT X=2

\ 4 v v

1: PUT X=2 1: PUT Y=4 1: PUT X=2
 How do we know which request succeeded?




BasiC Paxos exchange

Proposer Acceptors

&

propose(n)
_—

propose_ok(n, Na, Va)
4—

accept(n, v')
T

accept_ok(n)
4—

decided(Vv’)

—m—m)



Definitions

nis an id for a given proposal attempt
not an instance — this is still all within one instance!
e.g., n = <time, server_id>

v IS the value the proposer wants accepted

server S acceptsn, v
=> S sent accept_ok to accept(n, v)

n, v is chosen => a majority of servers accepted n,v



Key safety property

Once a value is chosen, no other value can be
chosen!

This is the safety property we need to respond to a
client: algorithm can't change its mind!

Trick: another proposal can still succeed,
but It has to have the same value!

Hard part: “"chosen” is a systemwide property:
no replica can tell locally that a value is chosen



Paxos protocol Idea

proposer sends propose(n) w/ proposal ID,
but doesn't pick a value yet

acceptors respond w/ any value already accepted
and promise not to accept proposal w/ lower ID

When proposer gets a majority of responses

* |f there was a value already accepted,
propose that value

e otherwise, propose whatever value it wanted



Paxos acceptor

* n, = highest propose seen
n,, v, = highest accept seen & value

* On propose(n)
if n > n,
n, = n
reply propose ok(n, n,, v,)

else reply propose reject

* On accept(n, Vv)

if n = n,
n, = n
n, = n
V, = V

reply accept ok(n)
else reply accept reject



Example: Common Case

Proposer Acceptor  Acceptor  Acceptor

L} R

propose( 1

propose_ok(1, nil, nil)
propose_ok(1, nil, nil) propose_ok(1, nil, nil)

accept(1, V)

accept_ok(1)
accept_ok(1)
accept_ok(1)

decided(V)



What is the commit point”

* |.e., the point at which, regardless of what failures
happen, the algorithm will always proceed to
choose the same value?

* Once a majority of acceptors send accept_ok(n)!

* why not when a majority of proposers send
propose_ok(n)?



Acceptor Acceptor

propose_ok(10) propose_ok(10)

accept_ok(10, X)
propose_ok(11)

e Has a value been chosen?”
e Could either X or Y be chosen?
 What happens it #2 gets accept(10, X)7

 What happens it #1 gets accept(11, Y)7

Acceptor

VAN

propose_ok(10)

propose_ok(11)

accept_ok(11,Y)



- Why does the proposer need to choose the value v,
with highest n,?

 (Guaranteed to see any value that has already obtained a
majority of acceptors

 can't change this value, so we need to use it!

 Will also see any value that could subsequently obtain a
majority of acceptors

* pbecause the proposal prevents any lower-numbered
proposal from being accepted



What about FLP?

No determinstic algorithm for solving consensus in
an asynchronous network is both safe (correct) and
ive (terminates eventually)

Paxos is an algorithm for solving consensus...

Paxos must not be guaranteed to be live

How can it get stuck?



Worst-case for Paxos

Proposer Acceptor  Acceptor  Acceptor Proposer

L} S T A A

propose(1

prop_ok(1) orop_ok(1) prop_ok(1)
propose(2)

orop_ok(2) prop_ok(2) prop_ok(2)
accept(1)

accept_re|(1) accept_rej(1) accept_rej(1)

(
accept(2
propose(3) prop_ok(3) prop_ok(3) prop_ok(3) Pi)

accept_re|(2) accept_re|(2) accept_rej(2)



What can we do about this?

don't retry immediately; wait random time then retry

designate one replica as leader (aka distinguished
proposer), have it make all the proposals

what If that replica fails?

e just an optimization, other replicas can still make
proposals If they think it failed



Multl-Paxos

All of the above was about a single instance,
.e., agreeing on the value for one log entry

In reality: series of Paxos instances

Optimization: if we have a leader,
have it run the first phase for multiple instances at once

propose(n): acceptor sets np = n for this instance and
all future instances

Then the proposer can jump to the accept phase



Multl-Paxos

request accept acceptok reply

Client

Leader E i '
R N
Replica L. . .

Replica £



Viewstamped Replication

* A Paxos-like protocol presented in terms of
state machine replication

* |.e, a system-builder’s view of Paxos

e see also RAFT from Stanford



Viewstamped Replication Is
exactly Multi-Paxos!



Starting point

2t+1 replicas, one of them is the primary

each one maintains a numbered log of operations
either PREPARED or COMMITTED

clients send all requests to primary

porimary runs a two-phase commit over replicas



2-phase commit

request prepare prepare-oki reply

Client

Leader
Rephcaﬁ—s

exec

Replica /..

Replica £



Beyond 2PC

2PC does not remain available with failures

So let’s try requiring a majority guorum:
f+1 PREPARE-OKs, including the primary

can tolerate f backup failures (no primary ftailure)

Minor detail: what if backup receives op n+1
without seeing op n

e need state transfer mechanism



The hard part

* need to detect that the primary has failed (timeout?)
* need to replace it with a new primary

 need to make sure that the new primary knows
about all operations committed by the primary

* need to keep the old primary from completing new
operations

e need to make sure that there are no race conditions!



Replacing the primary

Each replica maintains a view number,
view number determines the primary,
process PREPARE-OK only if view number matches

When primary suspected faulty: send
<START-VIEW-CHANGE, new v> to all

On receiving START-VIEW-CHANGE:
Increment view number, stop processing regs
send <DO-VIEW-CHANGE, v, log> to new primary

When primary receives DO-VIEW-CHANGE from majority:
take log with highest seen (not necessarily committed) op
install that log, send <START-VIEW, v, log> to all



Why is this correct”?



Why is this correct”?

* New primary sees every operation that could
possibly have completed in old view

e every completed operation was processed by
majority of replicas, and we have DO-VIEW-
CHANGE logs from a majority

e Can the old primary commit new operations?

* NoO - once a replica sends DO-VIEW-CHANGE
it stops listening to the old primary!



Why is this correct”?

 Because it's Paxos!
* View change = propose a new primary
* atwo-phase protocol involving majorities

* other replicas promise not to accept ops In old
View

* and proposer finds out all ops accepted in old
view and must propose them in new view



VR = (Multi-)Paxos

view number = proposal number

start-view-change(v) = propose(V)

do-view-change(v) = propose_ok(Vv)

start-view(v, log) = accept(v, op) for appropriate instance
prepare(v, opnum, op) = accept(v, op) for instance opnum
prepare_ok(v, opnum) = accept_ok(v, op) for instance opnum

commit(opnum, op) = decided(opnum, op)



Paxos performance

* What determines Paxos performance”

 We'll consider Multi-Paxos / VR
since it's the most common way to use Paxos



Multi-Paxos

throughput:
bottleneck replica processes 2n
msgs

request

Client

Leader E i '
Replica L. . .
Replica ¢

(\ latency: 4 message delays )




Batching

Have leader accumulate requests from many
clients

Run one round of Paxos in parallel to add them all
to the log

Much higher throughput

Potentially higher latency (can get it about even)



Partitioning

* One idea: run multiple Paxos groups

* each replica will be a leader In some,
follower in others - spreads load around

e very common in practice

e Separate idea: partition instances, different leaders for
each instance

e some protocols do this for higher throughput

* more complicated, easy to get wrong



