Caches, Coherence,
and Consistency
(and Consensus)

Dan Ports, CSEP 552



Caching

Simple idea: keep a duplicate copy of data
somewhere taster

Challenge: how do we keep the cached copy
consistent with the master?

What does it even mean to do that?

 ideally, user/app couldn'’t tell the cache was even there

oday will be about answering those questions



Why do we want caching”

e Reduce load on a bottleneck service
(exploit locality)

* Better latency
(cache is more conveniently located & hopefully

faster)

* High-level view:
caching: move data to where we want to use it
vs RPC: move computation to where the data is



Web Service Architecture

web Jstateless server]
FE

@@

— 2

all data stored
DB J here

\ ‘/




Adding a Cache

|dea: store recent DB results

web IN the cache so we can reuse them
FE

$ <r cache on FE

machine
6@

(in RAM)
— 3

DB




Cache detalls

* What do we do with writes?

e update the cache first, then update the database

e synchronously (write-through): safe but slow

e asynchronously (write-back): fast but not crash-safe
 What do we do if the cache runs out of space”

e throw data away (e.qg., least-recently-used)



Cache semantics

* Does this cache behave the way we’d like it to?

e |.e., can an application tell that the cache is there?



lerminology

- Coherence: the value returned by a read operation
'S always the value most recently written to that
object

* Unfortunately the terminology is inconsistent

 Coherence: properties about the behavior of
multiple reads/writes to same object

* Consistency: properties about behavior of
multiple reads/writes to different object



Cache coherence

web
FE
: Is this cache coherent?
Yes!

Network All writes go to cache f|rlst &
all reads check there first
=> always see latest write

— 3

DB




Scaling up

web web web
FE FE FE
$ $ $
Network

DB

A
/

Multiple front-end servers
each with 1ts own cache

Suppose we use the same
porotocol as before:
- update local cache
- then update DB
synchronously

|s the cache coherent now?



What are other systems that
uses caches”

* Just about everything...
* web browsers
e NFS

* DNS

* processors!
(lots of terminology comes from here)



How could we fix this?



ldea: Invaligations

* Protocol: on a write, update the DB and
send Iinvalidations to other caches

e \Which order should we do these in?

* Does that provide coherence”



|[dea: add locking

e \When A writes X:

A notities all caches and DB not to allow access
to X, walts for acknowledgments

* A updates DB, updates caches, waits for acks

* Areleases the lock
* Does this provide coherence?

e |s this efficient?



Better idea: exclusive ownership

e Basic idea; at most one cache iIs allowed to have a
dirty (modified) copy at any time

e Each entry on each cache is in one of three states:
* invalid (no cached data)
* shared (read/only)
* exclusive (read/write)

e X has exclusive access => all other caches invalid



Better idea: exclusive ownership

write read
send "write miss" to all copies send "read miss" to exclusive owner
read < Shared read
write write

send "write miss" to all copies



State transitions

e How does one cache transition to exclusive state?

e send write-miss RPC to everyone else,
walt for responses

e UpoN receiving write-miss:
if holding shared, go to invalid
if holding exclusive, write back and go to invalid

e Does this protocol work?

* need to be careful about two caches concurrently
trying to get exclusive state (locking)



Performance

* Single node can now repeatedly write object w/o
coordination

e Contention: concurrent reads/writes to same object

e cached item bounces back and forth
between caches

* Need to keep track of which caches have
shared/exclusive copies (distributed state)

- Performance costs are fundamental to
providing coherence!



What It we wanted
something cheaper?

Maybe OK to see an old value as long as it's not
more than 15 seconds out of date”

Maybe OK to see an old value, as long as it's not
before our last update”?

Maybe OK to see an old value if the last update
was logically concurrent?

Infinite possibilities for defining weak consistency/
coherence models!



Coherence in NFS

* Design choice: don't want server to keep track of
which clients have cached data

e Client periodically checks it cached copy is up to
date

* Only real guarantees:
dirty cache blocks flushed on close(),

open() invalidates any old cached blocks
(“close-to-open consistency”)



Coherence vs Consistency

* Coherence: properties about the behavior of
multiple reads/writes to same object

* Consistency: properties about behavior of multiple
reads/writes to different object

* \WWhen weakening our semantics, consistency
properties start to matter a lot...



Consistency Example

node0:
v0 = £0();
done0 = true;

nodel:
while(done0 == false)
vl = £1(vO0);
donel = true;

node2:
while(donel == false)

v2 = £2(v0, vl);

intent:

node?2 executes 12
w/ results from
nodeO and nodeT

node?2 waits for node1,

so should wait for
nodel too

Is this guaranteed?



Memory Model

* Behavior of this code depends on memory model

linearizable: behaves like a single system

serializable / sequentially consistent:
behaves like a single system to programs running on it

eventually consistent: if no more updates, all nodes
eventually have the same state. Before that... ?

weakly consistent:
doesn’t behave like a single system



| inearizabllity

e Strongest model

* A memory system is linearizable if:
every processor sees updates in the same order
that they actually happened in real time

* |.e., every read sees the result of the most recent
write that finished before the read started



'S this linearizable”

Pl: W(x)l1
P2: R(x)O0 R(x)l1



Pl:
P2:
P3:

'S this linearizable”

W(x)1



Pl:
P2:
P3:

'S this linearizable”

W(x)1



Linearizability Is restrictive

e Need to make sure that caches are invalidated
betore operation completes

* Even though this might not have been necessary

P2 needed to see effects of P3's update, even
though no explicit communication between them
(even if logically concurrent!)

 Why is this restriction useful?



Serializability
(Sequential Consistency)

Appears as though all operations fro

M all

processors were executed in a sequential order;

reads see result of previous write In t

nat order

Operations by each individual processor appear in

that sequence in program order

(i.e., in the order executed on that processor)

Slightly less strong than linearizability:

Nno real time constraint



'S this serializable”

Pl: W(x)l1
P2: R(x)O0 R(x)l1



'S this serializable”

Pl: W(x)1l
P2: R(x)l R(x)1
P3: W(x)2

Yes - valid order:
W(x)l R(x)1 R(x)1l W(x)2



Implementing sequential consistency

 Requirement 1: Program order requirement

e each process must ensure that its previous memory op IS
complete before starting the next in program order

e cache systems: write must invalidate all cached copies
 Requirement 2: Write atomicity

e Writes to the same location must be serialized, i.e., become
visible to all processors in same order

e value of write can't be returned by any read
until write completes



Causal consistency

* Aread returns a causally consistent version of the
data

* if Areceives message M from B, reads will return
all updates that B made before sending M

e |.e., will see all writes that happens-before your read



Causal vs
seguential consistency

* |s causal consistency weaker than
seguential consistency?

* Yes - don't need to decide an order for causally
unrelated writes!

 Why is this useful?

e can build a system that doesn’t coordinate on causally
unrelated writes — fast!

e |f two nodes are unable to communicate with each other,
can still ensure causal consistency but not sequential



s this causally consistent”?

Pl: W(x)l R(y)O
P2: R(y)2 R(x)O0
P3: W(y)2



s this causally consistent”?

Pl: W(x)1
P2: R(y)2 R(x)O
P3: R(x)1 W(y)2



Weaker consistency levels

* Weak consistency: anything goes

* Eventual consistency: if all writes stop, system
eventually converges to a consistent state where
read(x) will always return same value

* until then... anything goes

* Eventual consistency is popular:
NoSQL databases (Redis, Cassandra, etc). Why?



vy DSM

* (Goal: distributed shared memory

* aruntime environment where many machines
share memory

* make a distributed system look like a giant
multiprocessor machine

 Why would we want this?



lVy approach

e Use hardware virtual memory / protection to make DSM
transparent to application

* Recall virtual memory:
* OS installs mappings:
virtual address -> {physical addr, permissions}
(permissions = read/write, read-only, none)

e App violates permissions => trap to OS

* Here, exploit this to fetch pages remotely
& run cache coherence protocol



VY protocol

write read
send "write miss" to all copies send "read miss" to exclusive owner
read < Shared read
write write

send "write miss" to all copies



Granularity of coherence

* |[n hardware shared memory:
usually one cache line (~64 bytes)

 What does lvy use?
* Why the difference?

 \What are the tradeofts involved?



VY semantics

 What memory model does |vy provide?
* Coherence of individual memory locations?

* What about consistency?
s it sequentially consistent?



Implementing sequential consistency

 Requirement 1: Program order requirement

e each process must ensure that its previous memory op IS
complete before starting the next in program order

e cache systems: write must invalidate all cached copies
 Requirement 2: Write atomicity

e Writes to the same location must be serialized, i.e., become
visible to all processors in same order

e value of write can't be returned by any read
until write completes



Design options

Table I. Spectrum of Solutions to the Memory Coherence Problem

Page ownership strategy

Dynamic

Page . L

Distributed
synchronization Centralized strbutod manser
method Fixed manager Fixed Dynamic
Invalidation Not : Okay Good Good
allowed

Write-broadcast Very Very Very Very

expensive expensive expensive expensive




Performance

* What performance gain would we hope for?
N nodes => N * single node throughput

 Why wouldn’t we achieve this?



Performance

o A l A ‘ A l N ]
0 x 4 s

Number of processors

Fig. 10. Speedup of the matrix multiplication program.



Performance

8~
6
Q.
-
B,
V4
Q
(oW
7P
2
° A L A l A l A ]
0 2 4 L 8

Number of processors

Fig. 8. Speedup of the merge-split sort.



DISCUSSION

* Should we use DSM instead of message passing?
* Does DSM scale?

 Would it make sense to provide weaker
consistency in DSM?



INntro to Consensus

Fundamental problem in distributed systems:
get a group of nodes to agree on a value
even though some of them might fall

Lots of problems ultimately boil down to consensus

Lab 3 uses consensus for a reliable replicated
state machine

Next week: consensus algorithms -
Paxos & Viewstamped Replication



Consensus Problem

Multiple processes, each starting with an input

Processes run a consensus protocol,
then output a chosen value once it's complete

Safety requirement:

* consistency: all non-faulty processes output the same
value

* validity: that value was proposed by some node
(i.e., can’t just choose 0O!)

Termination:
eventually all non-tfaulty processes output a value



System model

- Assumptions about the world:
* Asynchronous network
* messages can be delayed indefinitely

* but messages that are repeatedly sent
will eventually be received

e SOMe Processes can crash

* just stop executing the protocol



—LP Result

* No deterministic consensus protocol
guarantees both safety and termination
in an asynchronous network where
one process can crash!



Warning:
handwaving imminent!



FLP Intuition

* SUpPPOse process A sends a message to process B
but hasn't gotten a reply back (e.qg., after retrying)

* Problem: is B crashed, or is the network just slow?
« Should A wait for B before deciding?
* |f yes: maybe B is crashed, so it'll wait forever!

* If no: maybe B is just slow, and will decide
something else



A bit more formal

e Consider executions of a distributed system:
the sequence in which the network delivers
messages to their recipients

- Bivalent state: a state where the network could
affect which value the processes choose



FLP proot sketch

» All fault-tolerant algorithms have bivalent starting conditions

e For any bivalent state, there’'s some sequence of message
deliveries that leads to another bivalent state

* Intuition: suppose there’s some message m that causes
the system to go from bivalent to O-valent. What it we
delay it?

e Tricky part: in fact, we could delay it until delivering m
keeps the system bivalent

» Can repeat indefinitely, causing algorithm to take forever



So what?

* We still need consensus algorithms!

e But they must somehow avoid the FLP [imitation

* always safe but don't always terminate

e randomized; terminates w/ high probability
* bound on message delivery time

e assume loosely synchronized clocks

* Next week: Paxos
not guaranteed to terminate in all cases



Whny stick to an
asynchronous model”

In practice, we could come up with a decent bound
on network latency & use this as a timeout

But it would be have to be pretty high

Resulting algorithm would have that timeout
hardcoded

Asynchronous algorithms are self-tuning



