Security
(and finale)

Dan Ports, CSEP 552

logay

e Security:
what it parts of your distributed system are
malicious”
 BFT: state machine replication

* Bitcoin: peer-to-peer currency

e Course wrap-up

Security

* [oo broad a topic to cover here!
e |ots of security issues in distributed systems
* Focus on one today:

how do we build a trusted distributed system when
some of its components are untrusted?

Fallure models

* Before: fail-stop
nodes either execute the protocol correctly or just stop

 Now: Byzantine failures
e some subset of nodes are faulty

e they can behave in any arbitrary way:
send messages, try to trick other nodes, collude, ...

* Why this model?

* |f we can tolerate this, we can tolerate anything else:
either malicious attacks or random failures

What can go wrong”

* Consider an unreplicated kv store:

 A: Append(x, "foo"); Append(x, "bar")
B: Get(x) -> "foo bar’
C: Get(x) -> "foo bar”

e \What can a malicious server do?

e return something totally unrelated
* reorder the append operations (“bar foo”)
e only process one of the appends

 show B and C different results

What about Paxos”

 Paxos tolerates up to f out of 2t+1 fail-stop tailures

* \WWhat could a malicious replica do?

. stop processing requests (but Paxos should handle this!)
. change the value of a key

. acknowledge an operation then discard it

. execute and log a different operation

. tell some replicas that seqg 42 is Put and others that it's Get
. get different replicas into different views

. force view changes to keep the system from making progress

BT replication

» Same replicated state machine model as Paxos/VR
* assume 2f+1 out of 3t+1 replicas are non-faulty

* use voting, signatures to select the right results

BFT model

attacker controls f replicas
* can make them do anything
* knows their crypto keys, can send messages

attacker knows what protocol the other replicas are
running

attacker can delay messages in the network arbitrarily
but the attacker can't
e cause more than f replicas to fall

e cause clients to misbehave break crypto

Why is BFT consensus hard?

 and why do we need 3f+1 replicas?

Paxos Quorums

* Why did Paxos need 2f+1 replicas to tolerate f failures?

* Every operation needs to talk w/ a majority (f+1)

request fof those nodes
A might fail

e need one left

OK !
iX j i j i j e guorums intersect
C 1 C 1 € 1

Ihe Byzantine case

 What if we tried to tolerate Byzantine failures with
2f+1 replicas”

out(X, 1) get(X)

/i

Quorums

* |n Paxos: quorums of f+1 out of 2f+1 nodes

* guorum intersection:
any two quorums intersect at at least one node

 For BFT: quorums of 2f+1 out of 3f+1 nodes

* quorum majority
any two quorums intersect at a majority of nodes
=>
any two quorums intersect at at least one good node

Are gquorums enough®

out(X,1)

/N

E' < l||||.'B E‘ < l||||.'B E' < Hlll.’B
X=1 X=1 X=0

X=0

Are gquorums enough®

e \We saw this problem before with Paxos:
just writing to a guorum wasn't enough
e Solution, in Paxos terms:

* Use a two-phase protocol: propose, then accept

e Solution, in VR terms:

e designate one replica as the primary, have it determine
request order

e primary proposes operation, waits for guorum
(prepare / prepareOK = Paxos’s accept/acceptOK)

BF1 approach

 Use a primary to order requests
* But the primary might be taulty
* could send wrong result to client
* could ignore client request entirely

* could send different op to different replicas
(this is the really hard case!)

BF1 approach

All replicas send replies directly to client

Replicas exchange information about ops received
from primary

(to make sure the primary isn’'t equivocating)

Clients notify all replicas of ops, not just primary;
if NO progress, they replace primary

All messages cryptographically signead

Starting point: VR

Request Prepare PrepareQk Reply

Client

Primary

Replica 1

Replica 2

 What's the problem with using this?

e primary might send different op order to replicas

Next try

* Client sends request to primary & other replicas

* Primary assigns seq number, sends
PRE-PREPARE(seq, op) to all replicas

* When replica receives PRE-PREPARE, sends
PREPARE(seq, op) to others

* Once a replica receives 2f+1 matching
PREPARES, execute the request

Request Pre-Prepare Prepare Reply

Client

Primary

Replica 1

Replica 2

Replica 3

e Can a faulty non-primary replica prevent progress”?
* Can a faulty primary cause a problem that won't be detected?

 What if it sends ops in a different order to different replicas?

Faulty primary

« What if the primary sends different ops to different replicas?
e case 1: all good nodes get 2f+1 matching prepares
e they must have gotten the same op
e case 2: >= f+1 good nodes get 2f+1 matching prepares
* they must have gotten the same op
e what about the other (f or less) good nodes”
e case 3: < f+1 good nodes get 2f+1 matching prepares

e system is stuck, doesn't execute any request

View changes

 What it a replica suspects the primary of being faulty?
e.g., heard request but not PRE-PREPARE

 Can it start a view change on its own?
* NO - need f+1 requests

* Who will be the next primary?

 How do we keep a malicious node from making sure it's
always the next primary?

* primary = view number mod n

Straw-man view change

* Replica suspects the primary, sends
VIEW-CHANGE to the next primary

* Once primary receives 2f+1 VIEW-CHANGEsS,
announces view with NEW-VIEW message

* includes copies of the VIEW-CHANGES

e starts numbering new operations at last seg
number it saw + 1

What goes wrong”

 Some replica saw 2f+1 PREPARESs for op n,
executed it

* The new primary did not

* New primary starts numbering new requests at n
=> two different ops with seq num n!

~IXINQ View changes

Need another round in the operation protocol!

Not just enough to know that primary proposed op
n, need to make sure that the next primary will hear
about It

After receiving 2f+1 PREPAREsS, replicas send
COMMIT message to let the others know

Only execute requests after receiving 2f+1
COMMITs

The final protocol

client sends op to primary
orimary sends PRE-PREPARE(seq, op) to all

all send PREPARE(seq, op) to all

after replica receives 2f+1 matching PREPARE(seq,

op),
send COMMIT(seq, op) to all

after receiving 2f+1 matching COMMIT(seq, op),
execute op, reply to client

The final protocol

Request . Pre-Prepare . Prepare | Commit | Reply

Client } . . .
Primary : :

Replica 1 !/A\\\v’vl/;/
AL XKL
Replica 2 4"" "‘\"
KD ¢
YV V"

Replica 3 -

BFT vs VR/Paxos

* BFT: 4 phases * VR: 3 phases
* PRE-PREPARE - primary « PREPARE - primary
determines request order determines request order

* PREPARE - replicas make
sure primary told them same

order

* COMMIT - replicas ensure PREPARE-OK - replicas
that a quorum knows about ensure that a quorum knows
the order about the order

* execute and reply * execute and reply

BFT vs VR/Paxos

Request Prepare PrepareOk Reply

Client
Primary
Replica 1 \/
Replica 2
Request .Pre-Prepare. Prepare . Commit ' Reply
Client

Primary

Replica 1

Replica 2

Replica 3

What did this buy us?

* Before, we could only tolerate fail-stop failures with
replication

 Now we can tolerate any failure, benign or
maliclous

* aslong as it only affects less than 1/3 replicas

e (what it more than 1/3 replicas are faulty?)

BFT Impact

* This is a powerful algorithm
* Asfar as | know, it is not yet being used in industry

 Why?

Performance

 Why would we expect BFT to be slow?
* |atency (extra round)
* message complexity (O(n2) communication)

e crypto ops are slow!

Benchmarks

 PBFT paper says they implemented a NFS file
server, got ~3% overhead

e But: NFS server writes to disk synchronously,
PBFT only does replication
(is this ok? fair?)

 Andrew benchmark w/ single client
=> only measures increased latency, not cost of crypto

Implementation Complexity

: ! oLy Adel
€ v\?é“,’ ' 551 ~‘ U\eﬂé“fq : Y'v\Q I Q€4 2l ld o
q '. Wello i /qv‘do‘/"‘ ' 4’\4‘9:' JC 5*\4-“"7
r -L ' . V\“Mkef !
ST Xa :
ey Ver
SPFVQ(
Secver
Je('\/‘-f(‘

[J. Mickens, “The Saddest Moment”, 2013]

Implementation Complexity

* Building a bug-free Paxos is hard!
« BFT is much more complicated
 Which is more likely”?
* bugs caused by the BFT implementation

* the bugs that BFT is meant to avoid

BF1 summary

* |t's possible to build systems that work correctly
even though parts may be malicious!

* Requires a lot of complex and expensive
mechanisms

* On the boundary of practicality?

Bitcoin

* (Goal: have an online currency with the properties we
Ike about cash

e portable

e can't spend twice

e can't repudiate after payment
* Nno trusted third party

* 2NONYyMOuUS

Why not credit cards”

e (or paypal, etc)
* needs a trusted third party which can
e track your purchases

* prohibit some actions

Bitcoin

* e-currency without a trusted central party
 What's hard technically?

* forgery

* double-spending

e theft

Basic Bitcoin model

e a network of bitcoin servers (peers) run by volunteers
* Nnot trusted; some may be corrupt!
 Each server knows about all bitcoins and transactions
e Jransaction (sender —> receiver)
e sender sends transaction info to some peers
e peers flood to other peers
* receiver checks that lots of peers have seen transaction

* receiver checks for double-spending

Transaction chains

e Every bitcoin has a chain of transaction records
* one for each time it's been transferred
* Each record contains
» public key of new owner
e hash of this bitcoin’s previous transaction record
e signed by private key of old owner

* (in reality: also fractional amounts, multiple recipients, ...)

Example

* Bob has a bitcoin received from Alice in T7
e T7: pub(Bob), hash(T6), sig(Alice)
e wants to buy a hamburger from Charlie
e gets his public key
e creates 18: pub(Charlie), hash(T7), sig(Bob)
e sends transaction to Bitcoin peers to store

e Charlie verifies that the network has accepted T8,
gives Bob the hamburger

Stealing

* Does this approach prevent stealing someone
else’s bitcoins?

* Need a user’s private key to spend a coin

* Challenge: what if an attacker steals Bob’s private
key?

* significant problem in practice!

Double-Spending

* Does this design so far prevent double-spending?

* What keeps Bob from creating two different
transactions spending the same bitcoin?

 Need to make sure the bitcoin peers properly verity a
transaction:

* [8's sighature matches 17's pub key

e there was no prior transaction that mentioned
hash(T7)

Veritying the transaction
chain

* Need to ensure that every client sees a consistent
set of operations

* everyone agrees on which transactions
happened and in what order

* Could achieve with a central server maintaining a
l0og, but we wanted to avoid that!

Can we use BFT7?

* |n theory, yes, but...
 BFT does not scale to large numbers of replicas!

e Can we ensure that malicious nodes make up less
than 1/3rd of the replicas?

Sybil attacks

You can have as many identities as you want on the
internet!

So an attacker could run many replicas, overwhelm
the honest nodes

(limited only by network bandwidth, etc)

How does BFT deal with this problem?

How does Bitcoin deal with this problem?

Ihe blockchaln

Full copy of all transactions stored in each peer

Each block:
hash(previousblock), set of transactions, nonce

Hash chain implies order of blocks

A transaction isn’'t real until it's in the blockchain

Extending the blockchain

 How do peers add to the blockchain?

* All the peers look at the longest chain of blocks,
try to create a new block extending the previous block

 Requirement: hash(new block) < target

e peers must find a nonce value that works by brute force

e requires months of CPU time, but thousands of peers
are working on it => new block every 10 minutes

* when new block created, announce it to all peers

Proof of work

 Why do peers have to work to find correct nonces?

* This solves the sybil attack problem
without a central authority or admission control

 BFT required less than 1/3 replicas faulty
* Bitcoin requires less than 1/2 the CPU power

controlled by faulty replicas
(actually, some attacks possible if 1/3 faulty)

Double-spending

o Start with blockchain ...->B6
* Bob creates transaction B->C, gets it into
blockchain
... > B6 -> B7, where B7 contains B->C

* s0 Charlie gives him a hamburger

 Can Bob create another block Bx and get peers
to accept chain ... -> B6 -> Bx instead?

Double-spending

 When will a peer accept a new chain it hears about?

 When it's longer than all other chains it's seen

e SO an attacker needs to produce a longer chain to
double-spend

needs to create B6->Bx->B8, longer than B6->B7

and needs to do that before the rest of the network
creates a new block (10 minutes)

so the attacker needs to have more CPU power than
the rest of the network

Bitcoin summary

* Building a peer-to-peer currency involves lots of

technical problems:
preventing thett, double-spending, forgery even
though some participants may be malicious

e Using CPU proof-of-work instead of BFI-like
porotocol avoids Sybil attacks

* Also lots of non-technical problems:
why does it have value, legality”

Wrapup

e \What have we learned?

From the first lecture:

We want to build distributed sys
more scalable, and more re

'ems to be

lable.

But it's easy to make a distributed system that's

less scalable and less reliable
centralized onel

than a

Distributed Systems
Challenges

Managing communication
Tolerating partial tailures

Keeping data consistent
despite many copies and massive concurrency

Scale and performance requirements
Malicious behavior

Testing

We've seen a variety of tools for
addressing these challenges

 Managing communication: RPC and DSM

e Tolerating failures:
Paxos, VR, Chain Replication, NOPaxos

e Keeping data consistent:
replication, transactions, cache coherency

e Scale and performance:
partitioning, caching, consistent hashing

o Security: BFT

* Testing: model checking and verification

We've seen how these are
used In various real systems

* The Google storage stack:
GFS, Chubby, Bigtable, Megastore, Spanner

* Weak consistency systems:
Amazon’s Dynamo, COPS

 Data analytics:
MapReduce, GraphlLab, Spark

We've built systems that
solve these problems

Fault-tolerant MapReduce (Lab 1)

Fault tolerant state through Paxos/replication (Lab
2/3)

Scalability through sharding (Lab 4)

Building a replicated sharded key-value store
IS a major accomplishment!

- Lesson: know when to use these
design patterns to solve distributed
systems challenges

 Many of the systems we looked at use:
RPC, state machine replication, Paxos, transactions...

* Reuse these algorithms even if not code

- Lesson: know when to avoid solving hard
poroblems you don't need to

« Example: MapReduce loses data on certain failures;
GFS uses a centralized, in-memory master

-+ Lesson: recognize and avoid trying to
solve Impossible problems

 Example: can’t guarantee consistency and perfect
avallability and low latency in all cases, so use
eventual consistency when this matters (Dynamo)

« Example: can't make failures completely transparent
with RPC

Distributed Systems are Exciting!

 Some of the hardest challenges we face in CS
e Some of the most powerful things we can build
* systems that span the world,

serve millions of users,
and are always up

