
CSEP552

Distributed Systems

Dan Ports

Agenda
• Course intro & administrivia

• Introduction to Distributed Systems

• (break)

• RPC

• MapReduce & Lab 1

Distributed Systems are Exciting!

• Some of the most powerful things we can build in CS

• systems that span the world,  
serve millions of users,  
and are always up

• …but also some of the hardest material in CS

• Incredibly relevant today: 
everything is a distributed system!

This course
• Introduction to the major challenges in building

distributed systems

• Key ideas, abstractions, and techniques for
addressing these challenges

• Prereq: undergrad OS or networking course, or
equivalent — talk to me if you’re not sure

This course
• Readings and discussions of research papers

• no textbook — good ones don’t exist!

• online discussion board posts

• A major programming project

• building a scalable, consistent key-value store

Course staff
Instructor: Dan Ports
drkp@cs.washington.edu
office hours: Monday 5-6pm 
or by appointment (just email!)

TA: Haichen Shen
haichen@cs.washington.edu

TA: Adriana Szekeres
aaasz@cs.washington.edu

Introduction to
Distributed Systems

What is a
distributed system?

• multiple interconnected computers that
cooperate to provide some service

• examples?

Our model of computing 
used to be a single machine

Our model of computing
today should be…

Our model of computing
today should be…

Why should we build
distributed systems?

• Higher capacity and performance

• today’s workloads don’t fit on one machine

• aggregate CPU cycles, memory, disks, network bandwidth

• Connect geographically separate systems

• Build reliable, always-on systems

• even though the individual components are unreliable

What are the challenges in
distributed system design?

What are the challenges in
distributed system design?

• System design: 
 - what goes in the client, server? what protocols?

• Reasoning about state in a distributed environment  
 - locating data: what’s stored where?  
 - keeping multiple copies consistent  
 - concurrent accesses to the same data

• Failure 
 - partial failures: some nodes are faulty  
 - network failure 
 - don’t always know what failures are happening

• Security

• Performance  
- latency of coordination 
- bandwidth as a scarce resource

• Testing

But it’s easy to make a distributed system that’s
less scalable and less reliable than a

centralized one!

We want to build distributed systems to be
more scalable, and more reliable.

Major challenge: failure

• Want to keep the system doing useful work in the
presence of partial failures

A data center
• e.g., Facebook, Prineville OR

• 10x size of this building, $1B cost, 30 MW power
• 200K+ servers
• 500K+ disks
• 10K network switches
• 300K+ network cables

• What is the likelihood that all of them are  
functioning correctly at any given moment?

A data center
• e.g., Facebook, Prineville OR

• 10x size of this building, $1B cost, 30 MW power
• 200K+ servers
• 500K+ disks
• 10K network switches
• 300K+ network cables

• What is the likelihood that all of them are  
functioning correctly at any given moment?

Typical first year for a cluster
• ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

• ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

• ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

• ~1 network rewiring (rolling ~5% of machines down over 2-day span)

• ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

• ~5 racks go wonky (40-80 machines see 50% packetloss)

• ~8 network maintenances (4 might cause ~30-minute random connectivity losses)

• ~12 router reloads (takes out DNS and external network for a couple minutes)

• ~3 router failures (have to immediately pull traffic for an hour)

• ~dozens of minor 30-second blips for dns

• ~1000 individual machine failures

• ~10000 hard drive failures

[Jeff Dean, Google, 2008]

Part of the system is always failed!

—Leslie Lamport, c. 1990

“A distributed system is one where the  
failure of a computer you didn’t know existed

renders your own computer useless”

And yet…
• Distributed systems today still work most of the time

• wherever you are

• whenever you want

• even though parts of the system have failed

• even though thousands or millions of other people are
using the system too

Another challenge:
managing distributed state

• Keep data available despite failures:  
make multiple copies in different places

• Make popular data fast for everyone:  
make multiple copies in different places

• Store a huge amount of data:  
split it into multiple partitions on different machines

• How do we make sure that all these copies of data
are consistent with each other?

Thinking about distributed
state involves a lot of subtleties

Thinking about distributed
state involves a lot of subtleties
• Simple idea: make two copies of data so you can tolerate

one failure

Thinking about distributed
state involves a lot of subtleties
• Simple idea: make two copies of data so you can tolerate

one failure

• We will spend a non-trivial amount of time this quarter
learning how to do this correctly!

• What if one replica fails?

• What if one replica just thinks the other has failed?

• What if each replica thinks the other has failed?

• …

A thought experiment
• Suppose there is a group of people, two of whom

have green dots on their foreheads

• Without using a mirror or directly asking each other,
can anyone tell whether they have a green dot
themselves?

• What if I tell everyone: “someone has a green dot”?

• note that everyone already knew this!

A thought experiment

• Difference between individual knowledge and
common knowledge

• Everyone knows that someone has a green dot,  
but not that everyone else knows that someone has
a green dot,  
or that everyone else knows that everyone else
knows, ad infinitum…

The Two-Generals Problem
• Two armies are encamped on two hills surrounding

a city in a valley  
 

• The generals must agree on the same time to
attack the city.

• Their only way to communicate is by sending a
messenger through the valley, but that messenger
could be captured (and the message lost)

The Two-Generals Problem
• No solution is possible!

• If a solution were possible:

• it must have involved sending some messages

• but the last message could have been lost, so we must
not have really needed it

• so we can remove that message entirely

• We can apply this logic to any protocol,  
and remove all the messages — contradiction

What does this have to do 
 with distributed systems?

Distributed Systems are Hard!
• Distributed systems are hard because  

many things we want to do are provably impossible
• consensus: get a group of nodes to agree on a

value (say, which request to execute next)
• be certain about which machines are alive and

which ones are just slow
• build a storage system that is always consistent

and always available (the “CAP theorem”)

• (we’ll make all of these precise later)

We will manage to do them anyway!

• We will solve these problems in practice by making
the right assumptions about the environment

• But many times there aren’t any easy answers

• Often involves tradeoffs => class discussion

Topics we will cover
• Implementing distributed systems: system and protocol design

• Understanding the global state of a distributed system

• Building reliable systems from unreliable components

• Building scalable systems

• Managing concurrent accesses to data with transactions

• Abstractions for big data analytics

• Building secure systems from untrusted components

• Latest research in distributed systems

Agenda
• Course intro & administrivia

• Introduction to Distributed Systems

• (break)

• RPC

• MapReduce & Lab 1

RPC
• How should we communicate between nodes in a

distributed system?

• Could communicate with explicit message patterns

• CS is about finding abstractions to make
programming easier

• Can we find some abstractions for communication?

Common pattern: 
 client/server

Client Server

request

response
} do  

some  
work

Obvious in retrospect

• But this idea has only been around since the 80s

• This paper: Xerox PARC, 1984  
Xerox Dorados, 3 mbit/sec Ethernet prototype

• What did “distributed systems” mean back then?

A single-host system
float balance(int accountID) {
 return balance[accountID];
}

void deposit(int accountID, float amount) {
 balance[accountID] += amount
 return OK;
}

client() {
 deposit(42, $50.00);
 print balance(42);
}

standard
function calls

Defining a protocol
 request "balance" = 1 {
 arguments {
 int accountID (4 bytes)
 }
 response {
 float balance (8 bytes);
 }
 }

 request "deposit" = 2 {
 arguments {
 int accountID (4 bytes)
 float amount (8 bytes)
 }
 response {
 }
 }

Hand-coding a client & server
client() {
 s = socket(UDP)

 msg = {2, 42, 50.00} // marshalling
 send(s, server_address, msg)
 response = receive(s)
 check response == "OK"

 msg = {1, 42}
 send(s -> server_address, msg)
 response = receive(s)
 print "balance is" + response
}

server() {
 s = socket(UDP)
 bind s to port 1024
 while (1) {
 msg, client_addr = receive(s)
 type = byte 0 of msg
 if (type == 1) {
 account = bytes 1-4 of msg // unmarshalling
 result = balance(account)
 send(s -> client_addr, result)
 } else if (type == 2) {
 account = bytes 1-4 of msg
 amount = bytes 5-12 of msg
 deposit(account, amount)
 send(s -> client_addr, "OK")
 }
}

Hand-coding a client & server
client() {
 s = socket(UDP)

 msg = {2, 42, 50.00} // marshalling
 send(s, server_address, msg)
 response = receive(s)
 check response == "OK"

 msg = {1, 42}
 send(s -> server_address, msg)
 response = receive(s)
 print "balance is" + response
}

server() {
 s = socket(UDP)
 bind s to port 1024
 while (1) {
 msg, client_addr = receive(s)
 type = byte 0 of msg
 if (type == 1) {
 account = bytes 1-4 of msg // unmarshalling
 result = balance(account)
 send(s -> client_addr, result)
 } else if (type == 2) {
 account = bytes 1-4 of msg
 amount = bytes 5-12 of msg
 deposit(account, amount)
 send(s -> client_addr, "OK")
 }
}

Hard-coded  
message formats!

Hand-coding a client & server
client() {
 s = socket(UDP)

 msg = {2, 42, 50.00} // marshalling
 send(s, server_address, msg)
 response = receive(s)
 check response == "OK"

 msg = {1, 42}
 send(s -> server_address, msg)
 response = receive(s)
 print "balance is" + response
}

server() {
 s = socket(UDP)
 bind s to port 1024
 while (1) {
 msg, client_addr = receive(s)
 type = byte 0 of msg
 if (type == 1) {
 account = bytes 1-4 of msg // unmarshalling
 result = balance(account)
 send(s -> client_addr, result)
 } else if (type == 2) {
 account = bytes 1-4 of msg
 amount = bytes 5-12 of msg
 deposit(account, amount)
 send(s -> client_addr, "OK")
 }
}

Hard-coded  
message formats!

Lots of  
boilerplate code!

RPC Approach

• Compile protocol into stubs  
that do marshalling/unmarshalling

• Make a remote call look like a local function call

RPC Approach

Client & Server Stubs
Client stub:
 deposit_stub(int account, float amount) {
 // marshall request type + arguments into buffer
 // send request to client
 // wait for reply
 // decode response
 // return result
 }
 To the client, looks like calling the deposit function we started with!

Server stub:
 loop:
 wait for command
 decode and unpack request parameters
 call procedure
 build reply message containing results
 send reply
 pretty much exactly the code we just wrote for the server!

Hides complexity of  
remote messaging

float balance(int accountID) {
 return balance[accountID];
}

void deposit(int accountID, float amount) {
 balance[accountID] += amount
 return OK;
}

client() {
 RPC_deposit(server, 42, $50.00);
 print RPC_balance(server, 42);
}

standard
function calls

Is all the complexity  
really gone?

Is all the complexity  
really gone?

• Remote calls can fail!

• Performance: maybe much slower

• Resources might not be shared  
(file system, disk)

Dealing with failure
• Communication failures

• Host failures

• Can’t tell if failure happened before or after

• was it the request message or the reply message that was lost?

• did the server crash before processing the request or after?

At-least-once RPC

• Have client retry request until it gets a response

• What does this mean for client and server
programmers?

At-least-once RPC

• Have client retry request until it gets a response

• What does this mean for client and server
programmers?

• Requests might be executed twice

At-least-once RPC

• Have client retry request until it gets a response

• What does this mean for client and server
programmers?

• Requests might be executed twice

• OK if they’re idempotent

Alternative: at-most-once

• Include a unique ID in every request  
(how to generate this?)

• Server keeps a history of requests it’s already
answered, their ID, and the result

• If duplicate, server resends result

At-least-one vs at-most-once

• Discussion: which is most useful? When?

Can we combine them?
• “Exactly-once RPC”

• Use retries and keep a history on the server

• Not possible in general:  
what if the server crashes?  
how do we know whether it crashed right  
before executing or right after?

• Can make this work in most cases with a fault-
tolerant server (Lab 3)

RPCs in Lab 1
• Our labs use Go’s RPC library to communicate

• Go provides at-most-once semantics

• sends requests over TCP; will fail if TCP connection
lost

• Requests are executed in separate threads (“goroutines”)

• Need to use synchronization mechanism (e.g, channels
& sync.Mutex) to synchronize accesses between threads

RPCs Summary
• Common pattern for client-server interactions 

(but not all distributed systems work this way)

• RPC is used everywhere

• automatic marshalling is really useful; lots of libraries

• client stubs and transparency are useful, 
but transparency only goes so far

• Dealing with failures is still hard and requires
application involvement

Agenda
• Course intro & administrivia

• Introduction to Distributed Systems

• (break)

• RPC

• MapReduce & Lab 1

MapReduce

• One of the first “big data” processing systems

• Hugely influential  
used widely at Google  
Apache Hadoop 
lots of intellectual children

Motivation
• Huge data sets from web crawls, server logs, user

databases, web site contents, etc

• Need a distributed system to handle these
(petabyte-scale!)

• Challenges 
 - what nodes should be involved?  
 - what nodes process what data?  
 - what if a node fails?  
 - …

MapReduce Model
• input is stored as a set of key-value pairs (k,v)

• programmer writes map function  
 map(k,v) -> list of (k2, v2) pairs  
 gets run on every input element

• hidden shuffle phase:  
group all (k2, v2) pairs with the same key

• programmer writes reduce function  
 reduce(k2, set of values) -> output pairs (k3,v3)

Discussion

• Is this a useful model?

• What can we express in it?

• What can we not express in it?

Counting words
• Input: (text, _)

• Desired output: (word, # of occurrences)

• Map function:  
 split text into words  
 emit(word, 1)

• Reduce function:  
 receives 1 element per word 
 emit(word, number of elements received)

Computing an inverted index

• Input: (document name, list of words)

• Desired output: (word, list of documents)

• Map: split document into words, for each word:
emit(word, docname)

• Reduce: input is (word, {list of docnames})  
identity function; that’s the output we wanted!

How does this get implemented?

Word count example

Word count example
• Input files: f1 = “a b”, f2 = “b c”

Word count example
• Input files: f1 = “a b”, f2 = “b c”

• master sends f1 to map worker 1 & f2 to worker 2  
map(f1) -> (a,1) (b,1) 
map(f2) -> (b,1) (c,1)

Word count example
• Input files: f1 = “a b”, f2 = “b c”

• master sends f1 to map worker 1 & f2 to worker 2  
map(f1) -> (a,1) (b,1) 
map(f2) -> (b,1) (c,1)

• once map workers finish, master tells each reduce worker what
keys they are responsible for

Word count example
• Input files: f1 = “a b”, f2 = “b c”

• master sends f1 to map worker 1 & f2 to worker 2  
map(f1) -> (a,1) (b,1) 
map(f2) -> (b,1) (c,1)

• once map workers finish, master tells each reduce worker what
keys they are responsible for

• each reduce worker accesses appropriate map output from
each map worker (the shared filesystem is useful here!)

Word count example
• Input files: f1 = “a b”, f2 = “b c”

• master sends f1 to map worker 1 & f2 to worker 2  
map(f1) -> (a,1) (b,1) 
map(f2) -> (b,1) (c,1)

• once map workers finish, master tells each reduce worker what
keys they are responsible for

• each reduce worker accesses appropriate map output from
each map worker (the shared filesystem is useful here!)

• each worker calls reduce once per key, e.g. 
reduce(b, {1, 1}) -> 2

MapReduce Performance
• Why should performance be good?

• Parallelism: many separate map and reduce workers 
n workers => 1/n * runtime?

• What are the performance limitations?

• moving map output to reduce workers is expensive

• stragglers: can’t finish a phase until the last one
finishes

Failures

• What happens if a worker fails?

• What happens if a worker is just slow?

• What happens if the master fails?

• What happens if an input causes workers to crash?

Lab 1
• Intro to Go programming and a bit of  

fault tolerance problems in distributed systems

• Part A: just Map() and Reduce() for word count

• Part B: write the master code to hand out map and
reduce jobs to worker threads via RPC

• Part C: deal with worker failures (failed RPCs)

Discussion

• What simplifying assumptions does MapReduce
make and how do they help?

• Would a more general model be useful, and how?

• We’ll revisit MapReduce later in the quarter and
compare it to other data analytic systems

