
A Logic of Authentication

MICHAEL BURROWS and MARTIN ABADI
Digital Equipment Corporation
and
ROGER NEEDHAM
University of Cambridge Computer Laboratory

Authentication protocols are the basis of security in many distributed systems, and it is therefore
essential to ensure that these protocols function correctly. Unfortunately, their design has been
extremely error prone. Most of the protocols found in the literature contain redundancies or security
flaws. A simple logic has allowed us to describe the beliefs of trustworthy parties involved in
authentication protocols and the evolution of these beliefs as a consequence of communication. We
have been able to explain a variety of authentication protocols formally, to discover subtleties and
errors in them, and to suggest improvements. In this paper we present the logic and then give the
results of our analysis of four published protocols, chosen either because of their practical importance
or because they serve to illustrate our method.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General-
security and protection; C.2.2 [Computer-Communication Networks]: Network Protocols-pro-
tocol uerification; D.4.6 [Operating Systems]: Security and Protection-authentication; crypto-
graphic controls; uerification; E.3 [Data]: Data Encryption-public key cryptosystems; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Security, Theory, Verification

Additional Key Words and Phrases: Authentication protocols, cryptographic protocol, key distribution
protocols, logics of knowledge and belief, Needham-Schroeder, X.509

1. INTRODUCTION

Authentication protocols are the basis of security in many distributed systems,
and it is therefore essential to ensure that these protocols function correctly [X5].
Unfortunately, their design has been extremely error prone. Although authenti-
cation protocols typically have few messages, the composition of each message
can be subtle, and the interactions between the messages can be complex.

This paper was nominated for publication in TOCS by the Program Committee for the ACM SIGOPS
Symposium on Operating Systems Principles, December 1989.
The three authors completed part of this work at Digital Equipment Corporation and part at the
University of Cambridge.
Authors’ addresses: M. Burrows and M. Abadi, Systems Research Center, Digital Equipment Cor-
poration, 130 Lytton Avenue, Palo Alto, CA 94301; and R. Needham, University of Cambridge
Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG, U.K.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0734-2071/90/0200-0018 $01.50

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990, Pages 18-36

A Logic of Authentication - 19

Moreover, protocol designers often misunderstand the available techniques,
copying features from existing protocols inappropriately. As a result, many of
the protocols found. in the literature contain redundancies or security flaws. To
add to the confusion, protocols use different cryptosystems (e.g., [14], [17]) and
cater for a wide range of applications; it is seldom clear how these protocols
compare in the guarantees they offer.

The goal of authentication can be stated rather simply, though informally and
imprecisely. After authentication, two principuls (people, computers, services)
should be entitled to believe that they are communicating with each other and
not with intruders. In this paper we define a logic of authentication to express
such beliefs precisely and to capture the reasoning that leads to them. These are
examples of questions that we would like to be able to answer with the help of
formal methods:

-Does this protocol work? Can it be made to work?
-Exactly what does this protocol achieve?
-Does this protocol need more assumptions than another protocol?
-Does this protocol do anything unnecessary?

In later sections we show how the logic has enabled us to answer these questions
for a number of published protocols. It is worth noting that we have not tried to
answer some other questions. Since we operate at an abstract level, we do not
consider errors introduced by concrete implementations of a protocol, errors such
as deadlocks, or even inappropriate use of cryptosystems (as in [19]). Further-
more, although we allow for the possibility of hostile intruders, there is no
attempt to deal with the authentication of an untrustworthy principal, or to
detect weaknesses of encryption schemes or unauthorized release of secrets (as
in [7] and [12]). We focus on the beliefs of trustworthy parties involved in the
protocols and on the evolution of these beliefs as a consequence of communica-
tion. This kind of study seems to be one of the most needed by current protocol
designers; we have often uncovered subtleties and suggested improvements in
existing protocols. We hope that protocol designers will build on our techniques
to suit their specific needs.

In an earlier paper [2], we developed a fragment of the logic and demonstrated
its ability to describe two authentication protocols: the well-known Needham-
Schroeder protocol [15] and the Otway-Rees protocol [16]. The main emphasis
there was on testing the soundness and viability of the approach. We have since
extended the logic to explain a much wider range of protocols and techniques. In
this paper we present the logic (in Section 2) and then use it to analyze four
protocols, chosen either because of their practical importance or because they
serve to illustrate our method. A more extensive report includes all the material
of both papers, and we refer the interested reader to it for further examples and
details on the logic and its semantics [3].

2. THE FORMALISM

In this section we describe the syntax and semantics of our logic, its rules, and
the transformations that we apply to protocols before their formal analysis.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

20 ’ M. Burrows et al.

2.1 Basic Notation

Our formalism is built on a many-sorted model logic. In the logic we distinguish
several sorts of objects: principals, encryption keys, and formulas (also called
statements). We identify messages with statements in the logic. Typically, the
symbols A, B, and S denote specific principals; Kab, K,, and KbS denote specific
shared keys; K,, Kb, and KS denote specific public keys, and K,‘, K;l, and K;l
denote the corresponding secret keys; and N,, Nb, and NC denote specific
statements. The symbols P, Q, and R range over principals; X and Y range over
statements; and K ranges over encryption keys.

The only propositional connective is conjunction, denoted by a comma.
Throughout, we treat conjunctions as sets and take for granted properties such
as associativity and commutativity. In addition to conjunction, we use the
following constructs:

-P believes X: P believes X, or P would be entitled to believe X. In particular,
the principal P may act as though X is true. This construct is central to the
logic.

-P sees X: P sees X. Someone has sent a message containing X to P, who can
read and repeat X (possibly after doing some decryption).

-P said X: P once said X. The principal P at some time sent a message
including the statement X. It is not known whether the message was sent long
ago or during the current run of the protocol, but it is known that P believed
X then.

-P controls X: P has jurisdiction over X. The principal P is an authority on
X and should be trusted on this matter. For example, a server is often trusted
to generate encryption keys properly. This may be expressed by the assumption
that the principals believe that the server has jurisdiction over statements
about the quality of keys.

-fresh(X): The formula X is fresh; that is, X has not been sent in a message
at any time before the current run of the protocol. This is usually true for
nonces, that is, expressions invented for the purpose of being fresh. Nonces
commonly include a timestamp or a number that is used only once.

-P & Q: P and Q may use the shared key K to communicate. The key K is
good, in that it will never be discovered by any principal except P or Q, or a
principal trusted by either P or Q.

-A P: P has K as a public key. The matching secret key (denoted K-l) will
never be discovered by any principal except P or a principal trusted by P.

-P&Q:Th f e ormula X is a secret known only to P and Q, and possibly to
principals trusted by them. Only P and Q may use X to prove their identities
to one another. An example of a secret is a password.

--1X),: This represents the formula X encrypted under the key K. Formally,
{X), is a convenient abbreviation for an expression of the form {X), from P.
We make the realistic assumption that each principal is able to recognize and
ignore his own messages; the originator of each message is mentioned for this
purpose.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication * 21

-(X) y: This represents X combined with the formula Y; it is intended that Y
be a secret and that its presence prove the identity of whoever utters (X) y.
In implementations, X is simply concatenated with the password Y. Our
notation highlights that Y plays a special role, as proof of origin for X, in
much the same way as an encryption key.

(A different notation is used for some of these constructs in other works on the
logic. The current notation is more verbose, but perhaps more readable and thus
more appropriate for a paper with few formulas.)

2.2 Logical Postulates

In the study of authentication, we are concerned with the distinction between
two epochs: the past and the present. The present epoch begins at the start of
the particular run of the protocol under consideration. All messages sent before
this time are considered to be in the past, and the authentication protocol should
be careful to prevent any such messages from being accepted as recent. All beliefs
held in the present are stable for the entirety of the protocol run. However,
beliefs held in the past are not necessarily carried forward into the present. The
simple division of time into past and present suffices for our purposes and has
greatly increased the ease with which the logic can be manipulated.

It is assumed that encryption guarantees that each encrypted section cannot
be altered or pieced together from smaller encrypted sections. If two separate
encrypted sections are included in one message, we treat them as though they
arrived in separate messages. A message cannot be understood by a principal
who does not know the key (or, in the case of public-key cryptography, by a
principal who does not know the inverse of the key); the key cannot be deduced
from the encrypted message. Each encrypted message contains sufficient redun-
dancy to allow a principal who decrypts it to verify that he has used the right
key. In addition, messages contain sufficient information for a principal to detect
(and ignore) his own messages.

After these informal preliminaries, we are now ready for discussing the main
logical postulates that we use in proofs.

(1) The message-meaning rules concern the interpretation of messages. Two
of the three concern the interpretation of encrypted messages, and the third
concerns the interpretation of messages with secrets. They all explain how to
derive beliefs about the origin of messages.

For shared keys, we postulate

P believes Q &- P, P sees (X jK
P believes Q said X ’

That is, if P believes that the key K is shared with Q and sees X encrypted under
K, then P believes that Q once said X. For this rule to be sound, we must
guarantee that P did not send the message himself; it suffices to recall that (X jK
stands for a formula of the form {X)Kfrom R, and to require that R # P. Similarly,

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

22 l M. Burrows et al.

for public keys, we postulate

P believes & Q, P sees (Xl,-1
P believes Q said X ’

For shared secrets, we postulate

P believes Q & P, P sees (X),
P believes Q said X ’

That is, if P believes that the secret Y is shared with Q and sees (X) y, then P
believes that Q once said X. This postulate is sound because the rules for sees
(given below) guarantee that (X) y was not just uttered by P himself.

(2) The nonce-verification rule expresses the check that a message is recent
and, hence, that the sender still believes in it:

P believes fresh(X), P believes Q said X
P believes Q believes X

That is, if P believes that X could have been uttered only recently (in the present)
and that Q once said X (either in the past or in the present), then P believes that
Q believes X. For the sake of simplicity, X must be “cleartext”; that is, it should
not include any subformula of the form (Y JK.

(3) The jurisdiction rule states that if P believes that Q has jurisdiction over
X then P trusts Q on the truth of X:

P believes Q controls X, P believes Q believes X
P believes X

(4) If a principal sees a formula, then he also sees its components, provided
he knows the necessary keys:

P sees (X, Y) P sees (X), P believes Q & P, P sees (XJK
P sees X ’ P sees X ’ P sees X ,

P believes & P, P sees (X), P believes I-% Q, P sees (X),-l
P sees X , P sees X

Recall that (Xl, stands for a formula of the form {Xl, from R. As a side
condition, it is required that R # P; that is, (X]k is not from P himself. A similar
condition applies to (X),-l.

The fourth rule is justified by the implicit assumption that if P believes that
K is his public key then P knows the corresponding secret key, K-l.

Note that if P sees X and P sees Y it does not follow that P sees (X, Y),
since this means that X and Y were uttered at the same time.

(5) If one part of a formula is fresh, then the entire formula must also be
fresh:

P believes fresh(X)
P believes fresh(X, Y) ’

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 23

2.3 On Quantifiers in Delegations

Delegation statements typically mention one or more variables. For example,
principal A may let the server S generate an arbitrary shared key for A and B.
We can express this as follows:

A believes S controls A k$ B

Here the key K is universally quantified, and we can make explicit this quanti-
fication by writing

A believes tlK.(S controls A A B)

For complex delegation statements, it is generally necessary to write quantifiers
explicitly in order to avoid ambiguities. For example, the reader can verify that
the two formulas

A believes VK.(S controls B controls A k$ B)
A believes S controls VK.(B controls A & B)

convey different meanings.
In our earlier work on the logic, this need was not recognized, and in fact, it

does not arise in any of the examples treated here (there are no nested jurisdiction
statements). Therefore, we leave quantifiers implicit in this paper.

All we use is the ability to instantiate variables in jurisdiction statements, as
reflected by the rule

P believes V VI . . . V,.(Q controls X)
P believes Q ’ controls X ’ ’

where Q ’ controls X ’ is the result of simultaneously instantiating the variables
VI,..., V, in Q controls X. Our formal manipulation of quantifiers is thus quite
straightforward.

2.4 Idealized Protocols

In the literature, authentication protocols are described by listing their messages;
each message is typically written in the form

P + Q: message.

This denotes that the principal P sends message to the principal Q. The message
is presented in an informal notation designed to suggest the bit-string that a
concrete implementation would use. This presentation is often ambiguous and
not an appropriate basis for our formal analysis.

Therefore, we transform each protocol step into an idealized form. A message
in the idealized protocol is a formula. For instance, the protocol step

may tell B, who knows the key KbS, that Kab is a key to communicate with A.
This step should then be idealized as

A -+ B: {A 2 B JKb.

The idealized protocols of the examples given below do not include cleartext
message parts; idealized messages are of the form {Xi)K,, . . . , (XnJK,. We have

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

24 l M. Burrows et al.

omitted cleartext communication simply because it can be forged, and so its
contribution to an authentication protocol is mostly one of providing hints as to
what might be placed in encrypted messages.

We view the idealized protocols as clearer and more complete specifications
than the traditional descriptions found in the literature, which we view merely
as implementation-dependent encodings of the protocols. Therefore, we recom-
mend the use of the idealized forms when generating and describing protocols.
Though not entirely trivial, deriving a practical encoding from an idealized
protocol is far less time consuming and error prone than understanding the
meaning of a particular informal encoding.

Nevertheless, in order to study protocols from the existing literature, we must
first generate idealized forms for each protocol. Simple guidelines control what
transformations are possible, and these help in determining the idealized form
for a particular protocol step. Roughly, a real message m can be interpreted as a
formula X if whenever the recipient gets m he may deduce that the sender must
have believed X when he sent m. Real nonces are transformed into arbitrary new
formulas; throughout, we assume that the sender believes these formulas. The
notation (X) y, which denotes the use of Y as a secret, can be introduced only
when the secret is intended as a proof of identity. Most importantly, for the sake
of soundness, we always want to guarantee that each principal believes the
formulas that he generates as messages. These simple guidelines suffice for our
purposes, but further work on formal transformation rules might be useful.

2.5 Protocol Analysis

In order to analyze idealized protocols, we annotate them with logical formulas,
much as in a proof in Hoare logic [lo]. We write formulas before the first message
and after each message. The main rules for deriving legal annotations are

-If X holds before the message P + Q: Y then both X and Q sees Y hold
afterwards; and

-if Y can be derived from X by the logical postulates then Y holds whenever X
holds.

An annotation of a protocol is like a sequence of comments about the beliefs
of principals and what they see in the course of authentication. In particular, the
formula before the first message represents the beliefs of the principals at the
start of the protocol. Step by step, we can follow the evolution from the initial
beliefs to the final ones-from the original assumptions to the conclusions.

3. THE GOALS OF AUTHENTICATION, FORMALIZED

Initial assumptions must invariably be made to guarantee the success of each
protocol. Typically, the assumptions state what keys are initially shared between
the principals, which principals have generated fresh nonces, and which principals
are trusted in certain ways. In most cases, the assumptions are standard and
obvious for the type of protocol being considered. Once all the assumptions have
been written, the verification of a protocol amounts to proving that some formulas
hold as conclusions.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 25

There is room for debate about what should be the goals of authentication
protocols that these conclusions describe. Often authentication is a precursor to
some communication protected by a shared session key, so we might desire
conclusions that describe the situation at the start of such a communication.
Thus, we might deem that authentication is complete between A and B if there
is a K such that

A believes A & B, B believes A & B

Some protocols achieve more than this, as in the following example:

A believes B believes A & B, B believes A believes A -& B

Other protocols attain only weaker final states, such as A believes B believes
X, for some X, which reflects only that A believes that B has recently sent
messages.

Some public-key protocols are not intended to result in the exchange of a
shared key, but instead transfer some other piece of data. In these cases, the
required goals are generally obvious from the context.

In the following sections, we examine a number of protocols and determine the
nature of the guarantees they offer.

4. THE KERBEROS PROTOCOL

The Kerberos protocol establishes a shared key between two principals with help
from an authentication server [13]. It is based on the shared-key Needham-
Schroeder protocol [15], but makes use of timestamps as nonces, both to remove
security problems [l, 61 and to reduce the total number of messages required.
Kerberos was developed as part of Project Athena at MIT and is also used
elsewhere.

We give the protocol below, with A and B as the two principals, Km and Kbs as
their private keys, and S as the authentication server. S and A generate the time
stamps T, and T,, respectively, and S generates the lifetime L. The fourth
message is used only if mutual authentication is required.

Message 1. A + S: A, B.
Message 2. S -+ A: (T,, L, Kb, B, ITS, L, &, AIK,,~JK~.

Message 3. A +B: IT,,& &~,A]K~~, M, Ta)~,,,.

Message 4. B -+A: (T= + lJKab.

This message sequence is represented in Figure 1. First, A sends a cleartext
message to S stating his desire to communicate with B. The server responds with
an encrypted message containing a timestamp, a lifetime, a session key for A and
B, and a ticket that only B can read. This ticket also contains the timestamp, the
lifetime, and the key. A forwards the ticket to B together with an authenticator
(a timestamp encrypted with the session key). B first decrypts the ticket and
checks the timestamp and lifetime. If the ticket has been created recently enough,
he uses the enclosed key to decrypt the authenticator. Then, if the authenticator’s

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

26 l M. Burrows et al.

Fig. 1. The Kerberos Protocol.

timestamp is recent, he uses the session key to return the timestamp, which A
checks. Once the principals are satisfied, they can proceed to use the session key.

We idealize the protocol as follows:

Message 2. S + A: IT,, A 2 B, {T,, A 2 BjKb,JK,.

Message 3. A + B: (T,, A 2 B)Kba, (T,, A 2 B)Kab from A.

Message 4. B +A: (T,, A 3 B}K& from B.

The idealized messages correspond quite closely to the messages described in
the published protocol. For simplicity, the lifetime L has been combined with the
time stamp T,, which is treated just like a nonce. The first message is omitted,
since it does not contribute to the logical properties of the protocol.

A further difference can be seen in the idealized form of Message 2. The
concrete protocol mentions the key Kab, which in this sequence has been replaced
by the statement that A and B can use Kab to communicate. This interpretation
of the messages is possible only because we know how the information in the
messages should be understood. Moreover, the idealized forms of the authenti-
cator and of Message 4 contain the explicit statement that Kab is a good session
key, whereas this statement is only implicit in the use of Knb in the concrete
protocol. In fact, we could soundly add B believes A believes A 2 B to
Message 4; we do not do so simply because the consequences of this addition
seem of little importance for the subsequent use of the session key.

There is some potential for confusion between the second half of the third
message and the last message. In the idealized protocol, we avoid this confusion
by mentioning the originators explicitly. In the concrete protocol, either the
mention of A in the third message or the addition in the fourth suffices to
distinguish the two-Kerberos is slightly redundant in this respect.

At this point, we can check that the idealized protocol corresponds to the
concrete one and that the guidelines for constructing idealized protocols are
respected.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 27

4.1 The Protocol Analyzed

To analyze this protocol, we first give the following assumptions:

A believes A 2 S, B believes B 2 S,
S believes A % S, S believes B 2 S,
S believes A 2 B, B believes (S controls A C% I?),
A believes (S controls A .h B), B believes fresh(T,),

A believes fresh(!I’,), B believes fresh (Z’,) .

The first group of four is about shared keys between the clients and the server.
The fifth indicates that the server initially knows a key for communication
between A and B. The next group of two indicates the trust that A and B have
in the server to generate a good encryption key. The final three assumptions
show that A and B believe that timestamps generated elsewhere are fresh; this
indicates that the protocol relies heavily on the use of synchronized clocks.

We analyze the idealized version of Kerberos by applying our rules to the
assumptions; the analysis is straightforward. In the interests of brevity, we give
many of the formal details necessary for our machine-assisted proof only for
Message 2, and we omit similar details later on. The main steps of the proof are
as follows:

A receives Message 2. The annotation rules yield that

A sees (T,, (A 2 B), (T,, A 2 BjKbajK,

holds afterward. Since we have the hypothesis

A believes A 2 S

the message-meaning rule for shared keys applies and yields the following:

A believes S said (T,, (A fh B), (T,, A 2 B)KJ

One of our rules to break conjunctions (omitted here) then produces

A believes S said (T,, (A %‘B))

Moreover, we have the following hypothesis:

A believes fresh(T,)

The nonce-verification rule applies and yields

A believes S believes (Z’,, A 3 B)

Again, we break a conjunction, to obtain the following:

A believes S believes A 2 B

Then, we instantiate K to Kab in the hypothesis

A believes S controls A & B

deriving the more concrete

A believes S controls A f% B
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

28 l M. Burrows et al.

Finally, the jurisdiction rule applies, and yields the following:

A believes A 3 B

This concludes the analysis of Message 2.

A passes the ticket on to B, together with another message containing a time-
stamp. Initially, B can decrypt only the ticket:

B believes A %’ B

Logically, this result is obtained in the same way as that for Message 2, via the
message-meaning, nonce-verification, and jurisdiction postulates.

Knowledge of the new key allows B to decrypt the rest of Message 3. Through
the message-meaning and the nonce-verification postulates, we deduce the
following:

B believes A believes A 2 B

The fourth message simply assures A that B believes in the key and has
received A’s last message. After new applications of the message-meaning and
nonce-verification postulates to the fourth message, the final result is as follows:

A believes A 2 B B believes A 2 B
A believes B believes A %’ B B believes A believes A 3 B

If only the first three messages are used, we do not obtain

A believes B believes A 2 B

That is, the three-message protocol does not convince A of B’s existence-A
observes the same messages whether B is running or not.

Although the result resembles that for the Needham-Schroeder protocol [3], a
major assumption in the Kerberos protocol is that the principal’s clocks are
synchronized with the server’s clock. The effect of totally synchronized clocks
can be obtained by synchronizing clocks to within a few minutes with a secure
time server and then detecting replays within this interval. However, actual
implementations do not always include this check and so provide only weaker
guarantees.

A slight (but potentially expensive) peculiarity is that S double-encrypts the
ticket in the second message. Looking back through the formal analysis, we see
that this does not affect the properties of the protocol, since A forwards the
ticket to B immediately afterward without further encryption. It has recently
been proposed that future versions of Kerberos remove this unnecessary double
encryption.

5. THE ANDREW SECURE RPC HANDSHAKE

An early version of the Andrew secure RPC protocol uses an authentication
handshake between two principals whenever a client binds to a new server [18].
The handshake is intended to allow a client A to obtain a new session key
K& from a server B, given that they already share a key Kab. This protocol is
vulnerable to an attack similar to that observed in the case of the shared-key
Needham-Schroeder protocol. We give it here as an illustration of how easily
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication * 29

Fig. 2. The Andrew Square RPC Handshake.

such problems can be missed and of how they manifest themselves in the logic
(see Figure 2).

Message 1. A + B: A, (N,)%,.
Message 2. B + A: {N, + 1, NbJKOb.

Message 3. A + B: {Nb + ljKa,.

Message 4. B + A: {K&, NL jKob.

N, and Nb are nonces; NL is an initial sequence number to be used in subsequent
communication. The first message simply transfers a nonce, which B returns in
the second message. If A is satisfied with the reply, he returns B’s nonce. After
B receives and checks the third message, he sends a new session key to A. As in
the Kerberos protocol, nonces are returned incremented by one, even though
there is no danger of generating identical messages during the protocol.

The .idealized protocol closely resembles the concrete one:

Message 1. A + B: {Na}Kab.
Message 2. B + A: (NLI, NbJKab.
Message 3. A + B: (NbJKmb.

Message 4. B + A: {A 2 B, N ‘b]Kab.

5.1 The Protocol Analyzed

First, we write the following assumptions:

A believes A 2 B B believes A 3 B

A believes (B controls A -& B) B believes A 2 B

A believes fresh(N,) B believes fresh(Nb)
B believes fresh(N,‘)

The first group of two indicates that A and B initially share a key. The next two
show that B has invented a new key and that A trusts B to invent good keys.
Finally, each client is able to generate fresh nonces.

For brevity, we do not describe our deductions, and simply list the final results:

B believes A f& B ,
A believes B said (A “;;b B, NL)
B believes A believes Nb
A believes B believes (N,, Nb)

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

30 l M. Burrows et al.

Unfortunately, we can go no further. We cannot obtain A believes B believes
A 2 B because there is nothing in the fourth message that A believes to be fresh.
We must conclude that the protocol suffers from the weakness that an intruder
can replay an old message as the last message in the protocol and can convince
A to use an old, possibly compromised session key. In other words, an intruder
may find an old session key and may replay the fourth message of the handshake
in which that key was established; he can then impersonate B. The problem can
be fixed simply by adding the nonce N, to the last message, and indeed a
descendant of the Andrew file system has adopted this solution.

In fact, more substantial changes to the protocol can also reduce the total
amount of encryption needed. Only two messages need be encrypted, one from A
and one from B. First, B sends a key KLb (along with a nonce N,):

B-A: (.,A%B)K&.

In a concrete implementation, N, may be a timestamp or a nonce that A sent to
B in a recent unencrypted message. A must reply with an acknowledgment that
K& has been accepted:

A + B: (5 B)K’,.

B believes this message is timely because K,$ is fresh. Optionally, B can go on to
send an initial sequence number NL in clear.

If this new protocol is analyzed, we obtain the following stronger outcome:

A believes A %i B B believes A f& B
A believes B believes A 5 B B believes A believes A %’ B

As a concrete realization of the protocol, we propose the following:

Message 1. A +-B: A, N,.
Message 2. B + A: (N,, K,‘b)Kab.
Message 3. A + B: (N,jKbb,
Message 4. B 3 A: Ni .

In Message 3, the use of N, is arbitrary; any predictable message will assure B
that A has encrypted something with the new key.

6. THE NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

In their original paper, Needham and Schroeder proposed a protocol based on
public-key cryptography; it allowed two principals to exchange two secret num-
bers [Xi]. A weakness in the protocol permits a replay attack in the interactions
with the certification authority if a key is compromised, as in the shared-key
Needham-Schroeder protocol.

Here, S, whose public key is KS, operates only as a certification authority
between A and B, whose public keys are K, and Kb, respectively; N, and N,, are
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 31

Fig. 3. The Needham-Schroeder Public-Key Protocol.

nonces. The message exchange goes as follows (see Figure 3):

Message 1. A ---, 5’: A, B.
Message 2. S * A: (K,,, B)K;I.
Message 3. A + B: (N,, AJKb.
Message 4. B -+ S: B, A.
Message 5. S + B: (K,, A 1~;‘.
Message 6. B += A: (N,, Nb]K,.
Message 7. A + B: {NbjKb.

The protocol has two rather independent but interleaved components. It is
expected that, initially, both A and B hold S’s public key K,. Therefore, the
principals A and B can obtain each other’s public keys from S. Messages 1,2,4,
and 5 accomplish this purpose. In a second component, in Messages 3, 6, and 7,
A and B use the public keys obtained. They communicate the secret nonce
identifiers N, and Nb. These secrets can be used later, for signing further
messages. For example, if B receives a message (X, N,)+ then B may deduce
that A sent X.

The idealized protocol is as follows:

Message 2. S + A: (I% BjK;l.
Message 3. A + B: {N=)K,.

Message 5. S + B: {s A),;l.

Message 6. B +- A : ((A $ B)iv,1~,.
Message 7. A +B: {(A 2 B)Nb]Kb.

Messages 1 and 4 are deliberately omitted, since they do not contribute to the
logical properties of the protocol. Messages 2 and 5 are straightforward, but the
others require some explanation. It is interesting to note the difference between
Message 3 and Messages 6 and 7. In Message 3, N, is not known to B and thus
is not being used to prove the identity of A ; Message 3 is used simply to convey
N, to B. In Messages 6 and 7, N, and Nb are used as secrets, so the (X) y notation

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

32 l M. Burrows et al.

is used. These messages also convey beliefs that have no representation in the
concrete protocol, because the messages would not be sent if the beliefs were not
held. In fact, just as in the case of Kerberos, we could soundly add more statements
of belief to Messages 6 and 7.

6.1 The Protocol Analyzed

First we state the assumed initial beliefs of the players:

A believes I% A B believes 2 B
A believes I!% S B believes 5 S
S believes 3 A S believes 2 B
S believes 3 S

A believes (5’ controls I% B) B believes (S controls 2 A)
A believes fresh(N,) B believes fresh(Nb)
A believes A 2B B believes A 2B
A believes fresh(3 B) B believes fresh(2 A)

Each principal knows the public key of the certification agent S, as well as his
own keys. In addition, S knows the public keys of A and B. Each principal trusts
the certification agent to correctly sign certificates giving the public key of the
other. Also, each principal believes that the secret that he generates is fresh. The
last two assumptions are surprising and represent a weakness in the protocol.
Each principal must assume that the message containing the public key of the
other principal is fresh. The difficulty could be resolved by adding timestamps to
Messages 2 and 5. This is analogous to the way that Kerberos’ timestamps
overcome the problem with the shared-key Needham-Schroeder protocol.

We obtain the final beliefs:

A believes I% B B believes 2 A
A believes B believes A L? B B believes A believes A >B

Each principal knows the public key of the other and has knowledge of a
shared secret that he believes the other will accept as being shared only by the
two principals. From this point, A and B can continue to exchange messages
using N,, Nb, and public-key encryption. In this way they can transfer data or
other keys securely.

7. THE CCITT X.509 PROTOCOL

A draft recommendation for the CCITT X.509 standard contains a set of three
protocols using between one and three messages [4]. (It is our understanding
that this has now become an official recommendation of the CCITT.) The
protocols are intended for signed, secure communication between two principals,
assuming that each knows the public key of the other. The three-message version
is given below. The two-message and one-message protocols are formed by
removing the last one or two messages, respectively.

The published protocol contains two weaknesses, either of which can be
exploited by an intruder, as we shall demonstrate below. We found one of these
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 33

Fig. 4. The CCITT X. 509 Protocol.

weaknesses while idealizing the protocol and the other during the subsequent
analysis (see Figure 4).

Message 1. A +B: A, (T,, N,, B, X,, (Y,)Kb)K,l.
Message 2. B +A: B, (Tb, Nb, A, N,, X,, (Yb)K,)Ki~.
Message 3. A + B: A, (NbjKL1.

Here, T, and Tb are timestamps, N, and Nb are nonces, and X,, YO, X,, and Yb
are user data. The protocol ensures the integrity of X, and Xb, assuring the
recipient of their origin, and guarantees the privacy of Y, and Yb.

For the idealized protocol, we simply take the following:

Message 1. A + B: {TGI, N,, X,, (Y,JKbJK;l.
Message 2. B +A: {Tb, Nb, N,, X,, {YbJK,JKbl.
Message 3. A + B: (NbJK,l.

As usual, the timestamps T, and Tb are viewed as nonces.

7.1 The Protocol Analyzed

We assume that each principal knows his own secret key and the other’s public
key, and believes his own nonce and the other’s timestamp to be fresh.

A believes 3 A B believes 2 B
A believes 3 B B believes 3 A
A believes fresh(N,) B believes fresh (Nb)
A believes fresh (Tb) B believes fresh (T,)

Now we can derive the following:

A believes B believes X, B believes A believes X,

This represents an outcome weaker than the authors desired; in particular, we
do not obtain B believes A believes Y, or A believes B believes Yb. Although
Y, and Yb have each been transferred in a signed message, there is no evidence
to suggest that the sender is actually aware of the data that he sent in the private
part of the message. This corresponds to a scenario where some third party
intercepts a message and removes the existing signature while adding his own,
blindly copying the encrypted section within the signed message. The simplest
fix is to sign the secret data Y, and Yb before it is encrypted for privacy.

Some redundancy is noticeable in the second message; either Tb or N, is
sufficient to ensure the timeliness of the message. The protocol description states

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

34 l M. Burrows et al.

that the checking of Tb is optional in the three-message version of the protocol.
In fact, it is perfectly reasonable to omit Tb altogether, since it is redundant in
both the two- and three-message protocols.

Unfortunately, the CCITT X.509 document also suggests that T, need not be
checked in the three-message protocol. This is a serious problem because the
checking of T,, is the only mechanism that establishes the timeliness of the first
message. Logically, if T, is not checked, we cannot perform nonce verification on
the first message, and we obtain only the weaker outcome Z? believes A said X,
instead of B believes A believes X,.

This difficulty explains the intention of the third message, which is to assure
B that A generated his first message recently. The authors seem to have hoped
that the use of Nb would suffice to link the third message to the first, since Nb
links the last two messages and N, links the first two messages. The error here
is that Nb alone does not link the last two messages, and this may allow an
intruder C to replay one of A’s old messages and thereafter to impersonate A.

The following concrete exchange illustrates the flaw. The intruder first
contacts B :

C 4 B: A, iTa, Na, B, Xc,, P’al~&r,~.

This is an old message originally sent by A. Remember that B is not presumed
to check the timestamp T, in the three-message protocol and so will not discover
the replay of A’s original message. B replies as though the message came from
A, and provides a new nonce, Nb.

B -+ c: B, (Tb, Nb, A, No, xb, (Ybkak;l

At this point C causes A to initiate authentication with C, by whatever means.

C replies to A, providing the nonce Nb. (The nonce Nb is not secret, and nothing
prevents C from using the same value in an instance of the protocol between A
and C.)

c + A: c, (Tc, Nb, A, N,‘, Xc, (Ych&;l

A replies to C, signing the exact message needed for C to convince B that the
first message was sent recently by A and is not a replay of an old message-
hence, this may allow C to impersonate A.

A + c: A, {iv&,’

One solution is to include B’s name in the last message. Since B guarantees
the uniqueness of his own nonces, he can be sure that this message is linked to
this instance of the protocol. The idealized version of Message 3 could then
include any beliefs transmitted in Message 1, assuring B of their timeliness.

The X.509 protocol actually uses hashing to reduce the amount of encryption:
In order to sign a Message n, a hash H(m) of m is computed and signed. This
has not been shown in the description above. The logic and the analysis of this
particular protocol are changed only slightly by the introduction of hashing [3].

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

A Logic of Authentication l 35

Table I. Summary of Results

Needham- Wide- Needham-
Schroeder otway- mouthed Andrew Schroeder CCITT
shared key Rsss Kerberos frog Yahalom RPC public key x.509

Goal

Keys
Uses secrets
Nonces/clocks
Proves

presence of
Redundancy
Bugs

Distribute Distribute Distribute Distribute Distribute Distribute Establish Transfer

key key key key’ key extra key secrets data
Shared Shared Shared Shared Shared Shared Public Public

X X
Nonces NO*CeS Clocks Clocks Nonces o Nonces Nonces Both

A and B B AandBb A A and B AandB A and B A and Bb

X X X X X

X X

X

X XC

’ In this case, A, rather than a trusted server, generates the key.
b B’s presence is guaranteed to A only if optimal protocol steps are used.
‘Security breaches do not even require key compromise.

8. CONCLUSIONS

Recent literature has emphasized the importance of reasoning about knowledge
for understanding distributed computation (e.g., [S]). Furthermore, there have
been some formal descriptions of cryptographic protocols [5, 9, 111. Although
these works are not closely related to ours and, in particular, they have not
suggested useful proof systems, they could serve as a foundation for our more
specific analysis of authentication protocols.

In this paper we have described a logic to reason about authentication protocols
and have treated several examples. Table I lists protocols studied with the logic,
including some discussed in [3], and summarizes their attributes. The wide-
mouthed-frog and the Yahalom protocols are described only in [3]; references for
the other protocols can be found below.

The table shows some well-known properties:

-the goal of each protocol;
-the type of cryptosystem used, shared key or public key;
-whether secrets (other than keys) are used; and
-whether message timeliness is guaranteed with nonces or synchronized clocks.

In addition, we include aspects that our formalism helped bring to light:

-whether the protocol proves the presence of each party to the other,
-redundancy, and
-security problems.

In Table I the principals involved in the protocols are A and B; the initiator
is A.

The examples show how a simple logic can capture subtle differences between
protocols. For a variety of protocols, it enables us to exhibit step by step how
beliefs are built up to the point of mutual authentication. For other protocols, it
guides us in identifying mistakes and in suggesting corrections.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

36 - M. Burrows et al.

ACKNOWLEDGMENTS

The work was undertaken as the result of a suggestion by Butler Lampson.
Andrew Birrell, Luca Cardelli, Dorothy Denning, Butler Lampson, Tim Mann,
Michael Schroeder, Jennifer Steiner, and many referees encouraged the work
and suggested improvements to the paper. Chris Mitchell provided information
on the CCITT protocol. Kathleen Sedehi typeset an early version of this paper
and produced the figures, and Cynthia Hibbard provided editorial assistance.

REFERENCES

1. BAUER, R. K., BERSON, T. A., AND FEIERTAG, R. J. A key distribution protocol using event
markers. ACM Trans. Comput. Syst. 1, 3 (Aug. 1983), 249-255.

2. BURROWS, M., ABADI, M., AND NEEDHAM, R. M. Authentication: A practical study in belief
and action. In Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about
Knowledge (Asilomar, Ca., Feb. 1988) M. Vardi, Ed. Morgan Kaufmann, Los Altos, Calif., 1988,
pp. 325-342.

3. BURROWS, M., ABADI, M., AND NEEDHAM, R. M. A logic of authentication. Rep. 39, Digital
Equipment Corporation Systems Research Center, Palo Alto, Calif., Feb. 1989.

4. CCITT. CCITT draft recommendation X.509. The directory-authentication framework, version
7. CCITT, Gloucester, Nov. 1987.

5. DEMILLO, R. A., LYNCH, N. A., AND MERRITT, M. J. Cryptographic protocols. In Proceedings
of the 14th ACM Symposium on the Theory of Computing (San Francisco, May 1982), ACM, New
York, 1982, pp. 383-400.

6. DENNING, D. E., AND SACCO, G. M. Timestamps in key distribution protocols. Commun. ACM
24,8 (Aug. 1981), 533-536.

7. DOLEV, D., AND YAO, A. C. On the security of public key protocols. IEEE Trans. Inf. Theory
IT-29,2 (Mar. 1983), 198-208.

8. HALPERN, J. Y., AND MOSES, Y. 0. Knowledge and common knowledge in a distributed
environment. In Proceedings of the 3rd ACM Conference on the Principles of Distributed Com-
puting (Vancouver, British Columbia, Aug. 1984), ACM, New York, 1984, pp. 480-490.

9. HALPERN, J. Y., MOSES, Y. O., AND TUTTLE, M. R. A knowledge-based analysis of zero
knowledge (preliminary report). In Proceedings of the 20th ACM Symposium on Theory of
Computing (Chicago, Ill., May 1988), ACM, New York, 1988, pp. 132-147.

10. HOARE, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.
1969), 576-580.

11. MERRITT, M. J., AND WOLPER, P. L. States of knowledge in cryptographic protocols. Draft.
12. MILLEN, J. K., CLARK, S. C., AND FREEDMAN, S. B. The interrogator: Protocol security analysis.

IEEE Trans. Softw. Eng. S&13,2 (Feb. 1987), 274-288.
13. MILLER, S. P., NEUMAN, C., SCHILLER, J. I., AND SALTZER, J. H. Kerberos authentication and

authorization system. In Project Athena Technical Plan, Sect. E.2.1. MIT, Cambridge, Mass.,
July 1987.

14. National Bureau of Standards. Data encryption standard. Fed. Inf. Process. Stand. Publ. 46.
National Bureau of Standards, Washington, D.C., Jan. 1977.

15. NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentication in large
networks of computers. Commun. ACM 21,12 (Dec. 1978), 993-999.

16. OTWAY, D., AND REES, 0. Efficient and timely mutual authentication. Uper. Syst. Reu. 21, 1
(Jan. 1987), 8-10.

17. RIVEST, R. L., SHAMIR, A., ANT) ADLEMAN, L. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 2 (Feb. 1978), 120-126.

18. SATYANARAYANAN, M. Integrating security in a large distributed system. ACM Trans. Comput.
Syst. 7,3 (Aug. 1989), 247-280.

19. VOYDOCK, V. L., AND KENT, S. T. Security mechanisms in high-level network protocols. ACM
Comput. Sure. 25, 2 (June 1983), 135-171.

Received May 1989; revised September 1989; accepted October 1989

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

