Bittyrant

Standard bittorrent has an optimistic TFT strategy

* set of peers to which a client sends == active set

* aclient sends to

o unchoked peers: peers from which it received data most rapidly

o optimistically unchoked: bootstrap new peers, probe for better sources
if a peer doesn’t send data quickly enough to earn reciprocation, it is choked

* apeer splits its upload bandwidth equally across unchoked peers
o ‘“equal split rate”

= equals upload capacity / size(active set)
o active set proportional to sqr_root(upload capacity) by default

Idea is to force peers to earn their way

e if [upload to you, I’ll be unchoked by you, and I’'ll get data from you
e “tit for tat”

But, note a few subtleties
* nothing guarantees rate matching
o standard clients saturate their upload capacity
o likely means altruism
* nothing smart about upload allocation

o equal split rate doesn’t proportionally reward peers
o likely inefficient

Bittyrant
100
Total
Notes a big fraction of upload Optimistic unchokes - - - -
capacity is spent altruistically 80 I- |
—1i.e., in a manner that % o LT '
doesn’t result in = I |
reciprocation. (in other E 0L \ B
words, that bandwidth is § \‘
wasted from a greedy point 20 L ' i
of view.) \,
0 ! NegewerTTT" A et ekt =1 =
1 10 100 1000 10000

Upload capacity (KB/s)

Goal of bittyrant: maximize reciprocation, in order to maximize DL rate

* maximize reciprocation bandwidth per connection
o find peers that use “equal split rate” and have high UL capacity
* maximize number of reciprocating peers
o expand active set to maximize # of reciprocators, until benefit of
additional peer is outweighed by cost of reduced reciprocation probability
from other peers
* deviate from equal split
o lower contribution to a peer as long as it continues to reciprocate
o saved bandwidth could be allocated to new connections

Go over unchoke algorithm:

For each peer p, maintain estimates of expected download
performance d,, and upload required for reciprocation .

Initialize u, and d,, assuming the bandwidth
distribution in Figure 2.

dy, is initially the expected equal split capacity of p.

Uy 1s initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp, /u, and unchoke
those of top rank until the upload capacity is reached.

DDV R
Uo U1 U2 U3 U4

g

choose k | °F_ o u; < cap
At the end of each round for each unchoked peer:
If peer p does not unchoke us: up < (1 + 6)up
If peer p unchokes us: d,, < observed rate.

If peer p has unchoked us for the last r rounds:
up — (1 —=7)up

Figure 9: BitTyrant unchoke algorithm

A side-effect of this is that the algorithm dynamically discovers the point of diminishing
returns for contributing bandwidth
* aselfish peer can withhold bandwidth beyond this

If everybody uses bittyrant, performance gets worse only if peers act selfishly

