
GraphLab and PowerGraph 
 
Background context 
 

• machine learning and data mining!!  (MLDM) 
o scale of ML and DM problems is growing 
o sequential execution speeds have plateaued 
o therefore, we need parallel versions of ML/DM programs 

 
• hard problem; no good approach yet 

o low-level primitives like MPI and pthreads 
§ force the user to solve all the problems that distribution 

frameworks (like MapReduce) try to solve 
§ e.g., serialization/deserialization, load balancing, locking and 

deadlock, data races, fault tolerance, and so on 
§ but, very efficient implementations are possible if you want to put 

in the huge effort required 
o MapReduce 

§ works great for non-iterative, embarrassingly parallel applications 
§ does not have a natural “iterative graph” programming abstraction 
§ fails when: 

• there are computational dependencies in the data; parallel, 
independent map/reduce doesn’t work 

• there is an iterative structure to the computation; e.g., 
gradient descent.  Forces the MR programmer to invoke 
MR iteratively themselves, and deal with scheduling, 
termination, and other issues. 

• computation fits in memory; common implementations of 
MR force outputs to disk  (just an implementation 
shortcoming, not fundamental to MR) 

o DAGs like Dryad 
§ no iteration, no dynamically prioritized computation 

 
 
Why graphs? 
 

• it turns out that many (most?) machine learning and data mining applications are 
naturally amenable to graph structuring 

o intuition: MLDM is often about dependencies between data – a 
dependency is an edge between two pieces of data; data is a vertex 
 

• graphs permit asynchronous and iterative computation 
o synchronous: all parameters are updated simultaneously, using parameter 

values from the previous time step.  requires a barrier, suffers from the 
straggler problem. 

§ iterative MR is naturally synchronous. 



o asynchronous: update parameters using most recent parameter values as 
input. 

§ naturally adapts to differences in execution speed coming from 
heterogeneity in hardware, network, or even the data itself (like 
differences in degree distributions of vertices) 

• graphs permit dynamic computation 
o in many algorithms, iterative computation converges asymmetrically 

§ e.g., pagerank:  some nodes converge quickly, while others take a 
long time 

§ if you update all parameters equally often, waste effort 
recomputing parameters that have already converged 

• there is a notion of serializability for graph structured computation 
o ensuring that a parallel execution has an equivalent sequential execution 
o do this by locking vertices as needed, depending on the consistency model 

 
GraphLab 
 
We’ll talk through three versions of GraphLab: 
 

1. Shared-memory, multicore parallel GraphLab  (i.e., one machine, no network) 
2. Distributed GraphLab  (i.e., many machines with a network) 
3. PowerGraph  (i.e., distributed graphlab optimized for powerlaw graphs) 

 
 
Shared memory, multicore parallel graphlab 
 
Data graph G = (V, E, D) 

• set of vertices V,  set of edges E, and user-defined data D 
• data can be associated with: 

o each vertex   { Dv : v in V } 
o each edge      {Duàv  : {u, v} in E } 

• data is mutable, but the graph structure is static 
 
Computation is encoded in “update functions.” 

• stateless procedure that (a) modifies data within 
the scope of a vertex, and (b) schedules the 
future execution of update functions on other 
vertices T 

• Sv:  scope of vertex v is 
the data stored in v, as 
well as in all adjacent 
vertices and edges of v 

 
Graphlab maintains a set of vertices to be 
updated, and iteratively and in parallel runs 
update functions on them. 



Data consistency 
 

• scopes can overlap, so simultaneously executing two update functions can result 
in a collision / race condition 

• graphlab offers three consistency models, allowing users to trade off performance 
and consistency as appropriate for their computation. 

o think of a consistency 
model as offering exclusion 
sets – concurrently 
executing update functions 
cannot share overlapping 
exclusion sets. 

• using these, you can achieve sequential consistency, if any of the following are 
true: 

o the full consistency model is used 
o edge consistency is used, and update functions don’t modify data in 

adjacent vertices 
o vertex consistency is used, and update functions can only modify local 

vertex data and read adjacent edges 
• consistency models enforced with locking 

 
 
Distributed graphlab 
 
The graph has to be partitioned into several sets, with 
each set executing on a separate machine on a 
workstation cluster.  Partitioning is done by edge-
cutting – i.e., the partition boundary is a set of edges.  

• need to maintain “ghost” vertices at the 
boundary – caches of vertex data 

• introduces a cache consistency problem that they solve with versioning 
• partitioning controls load balancing – want to be careful to have roughly the same 

number of vertices per partition, as well as the same number of ghosts 
o vertices proportional to computation 
o ghosts proportional to network load for cache updates 

 
Locking becomes distributed locking 

• to enforce a consistency model, need to graph a set of locks 
• if need to graph a lock on an edge or vertex that is on the boundary, need to do it 

on both partitions involved – hence, distributed locking 
• deadlock is avoided by having a canonical ordering of lock acquisition 

 
Fault tolerance becomes an issue, since you can experience partial failure 

• graphlab solves with checkpointing 
• uses Lamport-Chandy algorithm to do asynchronous snapshotting, rather than 

synchronous “stop the world” snapshot 



Efficiency: great! 
 

 
 
 
Powergraph 
 
The issue: many graphs have a power-
law distribution of connectivity, in 
which there are a few popular vertices 
with many, many edges, as well as a 
large number of unpopular vertices 
with few edges.  Typically see a Zipf 
distribution of in/out-degree. 
 
This causes problems for graphlab:  edge cuts become hugely load imbalanced, since 
some partitions will have the massively popular high degree nodes.  Leads to imbalance 
in computation (since update functions touch edges) and in network bandwidth (if a 
popular node is a ghost). 
 
First innovation: instead of partitioning by cutting 
edges, powergraph partitions by cutting vertices.  
This essentially picks one partition for each edge, 
and allows a high degree vertex to be split across 
multiple partitions. 
 
Second innovation: instead of running an 
update function for a vertex on a single 
machine, parallelize the update function 
across multiple machines.  This lets a high 
degree vertex update be parallelized.  
Requires the “accumulator” semantics to 
compose partial updates. 
 
Third innovation:  instead of randomly constructing vertex cuts, uses “derandomization” 
of the edge placement process.  Basically, for each edge, consider whether vertices on the 
edge have already been assigned to machines, and attempt to place the edge with some 



locality so that you minimize cross-machine placement.  (Details in the paper.)  Attempts 
to minimize cross-machine coordination and data flow. 
 
 
Does it work?  Yes!! 
 

 
 
 
 


