
GraphLab and PowerGraph

Background context

• machine learning and data mining!! (MLDM)
o scale of ML and DM problems is growing
o sequential execution speeds have plateaued
o therefore, we need parallel versions of ML/DM programs

• hard problem; no good approach yet

o low-level primitives like MPI and pthreads
§ force the user to solve all the problems that distribution

frameworks (like MapReduce) try to solve
§ e.g., serialization/deserialization, load balancing, locking and

deadlock, data races, fault tolerance, and so on
§ but, very efficient implementations are possible if you want to put

in the huge effort required
o MapReduce

§ works great for non-iterative, embarrassingly parallel applications
§ does not have a natural “iterative graph” programming abstraction
§ fails when:

• there are computational dependencies in the data; parallel,
independent map/reduce doesn’t work

• there is an iterative structure to the computation; e.g.,
gradient descent. Forces the MR programmer to invoke
MR iteratively themselves, and deal with scheduling,
termination, and other issues.

• computation fits in memory; common implementations of
MR force outputs to disk (just an implementation
shortcoming, not fundamental to MR)

o DAGs like Dryad
§ no iteration, no dynamically prioritized computation

Why graphs?

• it turns out that many (most?) machine learning and data mining applications are
naturally amenable to graph structuring

o intuition: MLDM is often about dependencies between data – a
dependency is an edge between two pieces of data; data is a vertex

• graphs permit asynchronous and iterative computation
o synchronous: all parameters are updated simultaneously, using parameter

values from the previous time step. requires a barrier, suffers from the
straggler problem.

§ iterative MR is naturally synchronous.

o asynchronous: update parameters using most recent parameter values as
input.

§ naturally adapts to differences in execution speed coming from
heterogeneity in hardware, network, or even the data itself (like
differences in degree distributions of vertices)

• graphs permit dynamic computation
o in many algorithms, iterative computation converges asymmetrically

§ e.g., pagerank: some nodes converge quickly, while others take a
long time

§ if you update all parameters equally often, waste effort
recomputing parameters that have already converged

• there is a notion of serializability for graph structured computation
o ensuring that a parallel execution has an equivalent sequential execution
o do this by locking vertices as needed, depending on the consistency model

GraphLab

We’ll talk through three versions of GraphLab:

1. Shared-memory, multicore parallel GraphLab (i.e., one machine, no network)
2. Distributed GraphLab (i.e., many machines with a network)
3. PowerGraph (i.e., distributed graphlab optimized for powerlaw graphs)

Shared memory, multicore parallel graphlab

Data graph G = (V, E, D)

• set of vertices V, set of edges E, and user-defined data D
• data can be associated with:

o each vertex { Dv : v in V }
o each edge {Duàv : {u, v} in E }

• data is mutable, but the graph structure is static

Computation is encoded in “update functions.”

• stateless procedure that (a) modifies data within
the scope of a vertex, and (b) schedules the
future execution of update functions on other
vertices T

• Sv: scope of vertex v is
the data stored in v, as
well as in all adjacent
vertices and edges of v

Graphlab maintains a set of vertices to be
updated, and iteratively and in parallel runs
update functions on them.

Data consistency

• scopes can overlap, so simultaneously executing two update functions can result
in a collision / race condition

• graphlab offers three consistency models, allowing users to trade off performance
and consistency as appropriate for their computation.

o think of a consistency
model as offering exclusion
sets – concurrently
executing update functions
cannot share overlapping
exclusion sets.

• using these, you can achieve sequential consistency, if any of the following are
true:

o the full consistency model is used
o edge consistency is used, and update functions don’t modify data in

adjacent vertices
o vertex consistency is used, and update functions can only modify local

vertex data and read adjacent edges
• consistency models enforced with locking

Distributed graphlab

The graph has to be partitioned into several sets, with
each set executing on a separate machine on a
workstation cluster. Partitioning is done by edge-
cutting – i.e., the partition boundary is a set of edges.

• need to maintain “ghost” vertices at the
boundary – caches of vertex data

• introduces a cache consistency problem that they solve with versioning
• partitioning controls load balancing – want to be careful to have roughly the same

number of vertices per partition, as well as the same number of ghosts
o vertices proportional to computation
o ghosts proportional to network load for cache updates

Locking becomes distributed locking

• to enforce a consistency model, need to graph a set of locks
• if need to graph a lock on an edge or vertex that is on the boundary, need to do it

on both partitions involved – hence, distributed locking
• deadlock is avoided by having a canonical ordering of lock acquisition

Fault tolerance becomes an issue, since you can experience partial failure

• graphlab solves with checkpointing
• uses Lamport-Chandy algorithm to do asynchronous snapshotting, rather than

synchronous “stop the world” snapshot

Efficiency: great!

Powergraph

The issue: many graphs have a power-
law distribution of connectivity, in
which there are a few popular vertices
with many, many edges, as well as a
large number of unpopular vertices
with few edges. Typically see a Zipf
distribution of in/out-degree.

This causes problems for graphlab: edge cuts become hugely load imbalanced, since
some partitions will have the massively popular high degree nodes. Leads to imbalance
in computation (since update functions touch edges) and in network bandwidth (if a
popular node is a ghost).

First innovation: instead of partitioning by cutting
edges, powergraph partitions by cutting vertices.
This essentially picks one partition for each edge,
and allows a high degree vertex to be split across
multiple partitions.

Second innovation: instead of running an
update function for a vertex on a single
machine, parallelize the update function
across multiple machines. This lets a high
degree vertex update be parallelized.
Requires the “accumulator” semantics to
compose partial updates.

Third innovation: instead of randomly constructing vertex cuts, uses “derandomization”
of the edge placement process. Basically, for each edge, consider whether vertices on the
edge have already been assigned to machines, and attempt to place the edge with some

locality so that you minimize cross-machine placement. (Details in the paper.) Attempts
to minimize cross-machine coordination and data flow.

Does it work? Yes!!

