
COPS

Context

Paper coins the term “ALPS”:

• availability: all operations issued to the data store complete successfully; no operation
will block indefinitely or return an error signifying that data is unavailable. Hence, no
operation can block waiting for a replica to recover. Rules out paxos / 2pc / other
coordination mechanisms on the critical path of reads and writes.

• low latency: client operations complete “quickly,” on the order of a few milliseconds.
Rules out cross-data-center RTTs.

• partition tolerance: data store continues to operate under network partitions. Rules out

strong consistency and sequential consistency (see below)

• high scalability: linear, incremental scalability

Linearizability and sequential consistency provide a global ordering of updates, even if those
updates are unrelated. One of the implications of these strong-ish consistency models is the need
to propagate updates synchronously to all replicas:

• an update cannot commit until its order is defined relative to other updates
• if have asynchronous update propagation, other updates may show up at replicas in a

different order than ours, leading to inconsistent read orders at different replicas

So, ALPS systems require a weaker-than-sequential consistency model. Claim in this paper
(proven in [35]) is that causal+ is the strongest consistency model achievable under these
constraints.

Causal consistency:

• uses the usual lamport-style causal definition
o in this system, a “context” argument to the data store defines what it means to be

a single thread of execution
o if the OS process were the thread of execution, could introduce many false

dependencies
• if a get can see an update X, that get reflects all the updates that X depends on causally

o however, causally concurrent updates can propagate in any order
§ implies concurrent updates to the same key can conflict and result in

divergent replicas
o causal+ -- conflicts will converge at all replicas (eventually)

System design

• all data is fully replicated at each COPS site
o a COPS site is a cluster or a data center
o inside a site, assume network RTTs and failures are bounded so that you can

provide strong consistency with low latency, using paxos or chain replication
o inside a site, data is partitioned across nodes using chain replication

• each key has one primary node in a cluster
o set of primary nodes across cluster is called the set of “equivalent nodes” for the

key
o after a write completes locally, the primary node places it in a replication queue,

from which it is sent asynchronously to the equivalent nodes
o the equivalent nodes wait until the value’s causal dependencies are satisfied

before locally committing
§ so, a write will commit at different times in different clusters, partly

because of asynchrony, and partly because of delays introduced by
satisfying the causal ordering property

Writes in detail

First, a write goes to the local cluster

• a client calls put(key, val, ctx) into its local library.
o library calls put_after(key, version=0, nearest), where nearest is the nearest

dependency in the dependency chain
o primary node in the local cluster assigns the key a version number using a

Lamport timestamp
§ allows COPS to derive a single global order over all writes for each key
§ last-writer-wins convergent conflict handling

o after write commits locally, return success to client
o after write commits locally, primary node asynchronously replicates to equivalent

nodes using a stream of put_after operations
§ a node that receives put_after from another cluster must wait until

dependencies have been satisfied locally
§ does this by issuing a “dep_check(key, version=nearest)” call, that

blocks until that key/version has been written
§ then, it is safe to commit to the cluster

Reads

• clients call get(key, ctx) in the library
o library calls get_by_version(key, version=LATEST) in local cluster
o library returns value to client

Failure handling

• within a cluster, rely on a cluster-specific linearizable, fault tolerant store. e.g., bigtable,
FAWN, or something else.

• that leaves only data center failures
o if a put_after originates in a failed data center but hasn’t been copied out, it is lost
o not clear what happens if a put_after gets copied out to a subset of remote stores

§ creates a dependency that will never be satisfied…block forever in
dep_check?

o replication queues in active data centers will grow until failed data center either
recovers or is marked as permanently down

§ huge issue; rate at which replication queue grows is proportional to the
write rate of the system!!

Evaluation

• a couple of “ugh”s in the experimental setup
o “All reads and writes in FAWN-KV go to disk, but most operations in our

experiments hit the kernel buffer cache.” Not clear if writes are synchronous out
to disk: probably not, given the latencies.

o Single cluster testbed split into emulated datacenters, but it doesn’t seem as
though they configured their “WAN” to have WAN latencies.

Microbenchmarks

• ping and get_by_version have very similar latencies and throughputs
o very little computation needs to be done, and reads satisfied out of buffer cache

rather than actually hitting disk
• ping and put_after shows that put_after has higher latency and lower throughput

o more computationally expensive; have to update metadata and write values in the
local stores

High-level observations

• we didn’t talk about the COPS-GT implementation, but it is more expensive, as it has to
pass around dependency graphs

o throughput depends very much on how long the dependency chains that get
passed around grow

§ garbage collection can truncate these, but only after long enough
§ get weird inflections in the graphs as a result

