
Spanner

A recent Google system designed for multi-datacenter replicated data. Deltas from megastore:

• fully transactional; no user-visible notion of entity groups
• externally consistent (i.e., linearizable) transactions; commit order reflects real time
• lock-based concurrency control; conflicting transactions are slowed down, rather than

aborted, and conflicts are based on actual row-level conflict
• no details in paper, but declarative SQL-like language

Data model

SQL-like set of tables

• table must have a primary key
• that key becomes a row name inside a bigtable-like underlying table

Can have a hierarchy of tables

• a “directory” contains a collection of related rows across the hierarchy
• directory ends up being the unit of data placement / replication

Software structure

Tablet is like a BigTable tablet: a sequence
of rows

• like BigTable, tablet state stored in
a set of SSTables and a WAL,
within GFS’ successor Colossus

Each tablet is replicated across multiple
data centers using Paxos

• each paxos state machine has a
relatively long-lived leader

• call the set of replicas, plus the
leader, a “paxos group”

Transactions can span paxos groups

• implemented as two-phase commit across the groups
o i.e., have 2PC running on top of paxos!

• the leader of each paxos group manages a lock table for concurrency control
o one paxos leader ends up being the 2PC coordinator, others the slaves

• “some authors have claimed that two-phase commit is too expensive to support, because
of the performance or availability problems that it brings. We believe it is better to have
application programmers deal with performance problems due to overuse of transactions
as bottlenecks arise, rather than always coding around the lack of transactions. Running
two-phase commit over Paxos mitigates the availability problems.”

TrueTime

Synchronized clocks across Google’s entire infrastructure

• time master: a time server; set per data center
o GPS receivers with dedicated antenna, or,
o atomic clock

• timeslave daemon: a time client on a workstation
o selects multiple masters, from multiple data centers
o Marzullo’s algorithm to sync clock and detect/reject liars
o between synchronizations, advertise slowly increasing uncertainty

§ about 200 microseconds/second drift rate applied

Interface

• TTInterval tt = TT.now();
o tt.latest – tt.earliest = e, the instantaneous error bound
o in practice, e sawtooths between 1ms and 6ms

Time and transactions

Want to be able to do two things:

• assign a meaningful timestamp to a transaction
• order transactions meaningfully

Assigning a timestamp to a transaction

Have strict two-phase locking for write transactions:

• transaction begins
• a period where you gather locks
• a period where locks are held
• a period where you release locks
• transaction ends

Can assign a timestamp anytime between
(all locks held) and (any locks released).
Q: Why?

Once you’ve picked this
timestamp, need to ensure that the
transaction timestamp is consistent
with global time. In other words,
nobody else should be able to see
the transaction side-effects until
after s.latest. To do this, need to
introduce a “commit wait” period
before the locks are released.

Commit wait also enforces external consistency (same as linearizability): if the start of T2 occurs
after the commit of T1, then the commit timestamp of T2 > commit timestamp of T1. Proof is in
the paper.

Picking a timestamp during 2-Phase commit

The 2PC coordinator gathers a number of TrueTime timestamps

• the prepare timestamps from non-coordinators
• the timestamp that the coordinator received the commit message from the client,

TTcommit

Chooses overall transaction timestamp to be greater than the prepare timestamps, greater than
TTcommit.latest, and greater than any timestamps assigned to earlier transactions. Does commit
wait based on this maximum.

Implications of commit wait

• the larger the uncertainty bound from TrueTime, the longer commit wait period you get
• commit wait will slow down dependent transactions, since locks are held during commit

wait
• so, as time gets less certain, Spanner gets slower (!!)

Attacking TrueTime

• you can cause very long commit wait periods – slow the system down
• you can break the ordering guarantees; no longer have external consistency, but cannot

cause inconsistency (because still doing two-phase locking)
• go read Winstanley’s board posting for full details.

Performance

This is for a single spanserver per zone; enough load to saturate spanserver CPU, and all data is
served out of memory to measure overhead of Spanner stack. Get about 2,500 transactional
writes/s per CPU, and about 15,000 transactional reads/s per CPU.

