
Disconnected Operation in the Coda File System (’91)
Kistler, Satyanarayanan

What are the paper’s goals?

• An early examination of disconnected replication, and implications

Major contributions:

• given whole-file caching, disconnected operation is easy
o allow access to cached copy in period of disconnection (“emulation”)
o implies callbacks will break, won’t learn of new copies
o might be reading stale data (r/w conflict)

§ tricky: leads to cascading conflicts – read from stale file, write to
different file – different file is “tainted”

§ causal connection
o might diverge (w/w conflict)

• disconnected operation has all the same problems as cache coherency – the major

difference is what you do if a server is unavailable
o Ivy

§ Block everything to maintain coherence
o Coda?

§ Let things continue, clean up mess later

• notion of hoarding
o FS automatically determines what you want given your usage pattern
o not clear this worked then
o clear it can likely work now – replicate all files, pretty much

• log writes during disconnection
o keep track of side-effects to play back
o log writes? why not just dirty bit on modified files?

§ so coda could only send deltas, not full file, on reconciliation
• reintegration by replaying logs at servers

o single transaction: any conflict and it fails, punts to human!
o conflict checking via version numbers
o possible to do better

§ update files that don’t conflict
§ need to worry about larger-level consistency issues
§ causal consistency and tracking as one way
§ hard problem! Leads to notion of transactions

o conflict resolution
§ entirely up to human in coda
§ need better way

• ask human which version to keep? (apple isync)
• figure out what semantically makes sense for application

(bayou: calendar, mail)
• record-level merge? (cvs)

Evaluation

• about 3MB/hour of dirty data produced during disconnected operation
o jives with other FS studies – a few megabytes to tens of megabytes per

day
o getting bigger with big read-only files (media, powerpoint, etc.)

• sequential write sharing is rare – 0.5% modifications are by different writer than
previous.

o what are implications of sequential write sharing? potential conflict if
either writer is disconnected

• concurrent write sharing is typically non-existent or super-duper-rare
o implications? conflict even if connected!
o has this changed?

Questions

• Comparison between coda-style hoarding/reintegration and DVCS?

• Is there a better way to handle conflicts, maybe automatically?
o Bayou says yes.

§ think PIM (calendar. address book etc.) sync’ing
§ think IMAP
§ typically rely on app-specific semantics, and even still, have to

punt to user from time to time

• is disconnected operation relevant anymore?

• client-server integration vs. p2p integration?
o bayou

